We describe the generation of far-infrared radiation using an optically pumped molecular laser along with the measurement of their frequencies with heterodyne techniques. The experimental system and techniques are demonstrated using difluoromethane (CH2F2) as the laser medium whose results include three new laser emissions and eight measured laser frequencies.
The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 107. Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength.
The measurement of far-infrared laser frequencies was first performed by Hocker and co-workers in 1967. They measured the frequencies for the 311 and 337 μm emissions from the direct-discharge hydrogen cyanide laser by mixing them with high order harmonics of a microwave signal in a silicon diode1. To measure higher frequencies, a chain of lasers and harmonic mixing devices were used to generate the laser harmonics2. Eventually two stabilized carbon dioxide (CO2) lasers were chosen to synthesize the necessary difference frequencies3,4. Today, far-infrared laser frequencies up to 4 THz can be measured with this technique using only the first harmonic of the difference frequency generated by two stabilized CO2 reference lasers. Higher frequency laser emissions can also be measured using the second harmonic, such as the 9 THz laser emissions from the methanol isotopologues CHD2OH and CH318OH.5,6 Over the years, the accurate measurement of laser frequencies has impacted a number of scientific experiments7,8 and permitted the adoption of a new definition of the meter by the General Conference of Weights and Measures in Paris in 1983.9–11
Heterodyne techniques, such as those described, have been immensely beneficial in the measurement of far-infrared laser frequencies generated by optically pumped molecular lasers. Since the discovery of the optically pumped molecular laser by Chang and Bridges12, thousands of optically pumped far-infrared laser emissions have been generated with a variety of laser media. For example, difluoromethane (CH2F2) and its isotopologues generate over 250 laser emissions when optically pumped by a CO2 laser. Their wavelengths range from approximately 95.6 to 1714.1 μm.13–15 Nearly 75% of these laser emissions have had their frequencies measured while several have been spectroscopically assigned16–18.
These lasers, and their accurately measured frequencies, have played a crucial role in the advancement of high-resolution spectroscopy. They provide important information for infrared spectral studies of the laser gases. Often these laser frequencies are used to verify the analysis of infrared and far-infrared spectra because they provide connections among the excited vibrational state levels that are often directly inaccessible from absorption spectra19. They also serve as the primary radiation source for studies investigating transient, short-lived free radicals with the laser magnetic resonance technique20. With this extremely sensitive technique, rotational and ro-vibrational Zeeman spectra in paramagnetic atoms, molecules, and molecular ions can be recorded and analyzed along with the ability to investigate the reaction rates used to create these free radicals.
In this work, an optically pumped molecular laser, shown in Figure 1, has been used to generate far-infrared laser radiation from difluoromethane. This system consists of a continuous wave (cw) CO2 pump laser and a far-infrared laser cavity. A mirror internal to the far-infrared laser cavity redirects the CO2 laser radiation down the polished copper tube, undergoing twenty six reflections before terminating at the end of the cavity, scattering any remaining pump radiation. Therefore the far-infrared laser medium is excited using a transverse pumping geometry. To generate laser action, several variables are adjusted, some simultaneously, and all are subsequently optimized once laser radiation is observed.
In this experiment, far-infrared laser radiation is monitored by a metal-insulator-metal (MIM) point contact diode detector. The MIM diode detector has been used for laser frequency measurements since 1969.21–23 In laser frequency measurements, the MIM diode detector is a harmonic mixer between two or more radiation sources incident on the diode. The MIM diode detector consists of a sharpened Tungsten wire contacting an optically polished Nickel base24. The Nickel base has a naturally occurring thin oxide layer that is the insulating layer.
Once a laser emission was detected, its wavelength, polarization, strength, and optimized operating pressure were recorded while its frequency was measured using the three-laser heterodyne technique25–27 following the method originally described in Ref. 4. Figure 2 shows the optically pumped molecular laser with two additional cw CO2 reference lasers having independent frequency stabilization systems that utilize the Lamb dip in the 4.3 μm fluorescence signal from an external, low pressure reference cell28. This manuscript outlines the process used to search for far-infrared laser emissions as well as the method for estimating their wavelength and in accurately determining their frequency. Specifics regarding the three-laser heterodyne technique as well as the various components and operating parameters of the system can be found in Supplemental Table A along with references 4, 25–27, 29, and 30.
There are several critical steps within the protocol that require some additional discussion. When measuring the far-infrared laser wavelength, as outlined in step 2.5.3, it is important to ensure the same mode of the far-infrared laser emission is being used. Multiple modes of a far-infrared laser wavelength (i.e., TEM00, TEM01, etc.) can be generated within the laser cavity and thus it is important to identify the appropriate adjacent cavity modes being used to measure the wavelength…
The authors have nothing to disclose.
This work was supported in part by the Washington Space Grant Consortium under Award NNX10AK64H.
Vacuum pump | Leybold | Trivac D4A | HE-175 oil; Quantity = 3 |
Vacuum pump | Leybold | Trivac D8B or D16B | Fomblin Fluid; Quantity = 1 of each |
Vacuum pump | Leybold | Trivac D25B | HE-175 oil; Quantity = 1 |
Optical chopper with controller | Stanford Research Systems | SR540 | |
Lock-in amplifier | Stanford Research Systems | SR830 | |
Spectrum analyzer | Agilent | E4407B | ESA-E Series, 9 kHz to 26.5 GHz Spectrum Analyzer |
Amplifier | Miteq | AFS-44 | Provides amplification of signals between 2 and 18 GHz. The amplifier is powered by a Hewlett Packard triple output DC power supply, model E3630A. |
Amplifier | Avantek | AWL-1200B | Provides amplification of signals less than 1.2 GHz. |
Power supply | Hewlett Packard | E3630A | Low voltage DC power supply for amplifier. |
Power supply | Glassman | KL Series | High voltage power supply for the CO<sub>2</sub> lasers; Quantity = 2; negative polarity |
Power supply | Fluke | 412B | High voltage power supply used with the NIST Asymmetric HV Amp |
Detector | Judson Infrared Inc | J10D | For fluorescence cell; Quantity = 2 |
CO<sub>2</sub> laser spectrum analyzer | Optical Engineering | 16-A | Currently sold by Macken Instruments Inc. |
Thermal imaging plates with UV light | Optical Engineering | Primarily used for aligning the CO<sub>2</sub> reference lasers. Currently sold by Macken Instruments Inc. | |
Resistors | Ohmite | L225J100K | 100 kW, 225 W. Between 4 to 6 resistors are used in each ballast system. Each CO<sub>2</sub> laser has its own ballast system. Fans are used to cool the resistors. |
HV relay, SPDT | CII Technologies | H-17 | Quantity = 3; one for each CO<sub>2</sub> laser |
Amplifier | Princeton Applied Research | PAR 113 | Used with fluorescence cell; Quantity = 2 |
Oscilloscope | Tektronix | 2235A | Similar models are also used; Quantity = 2 |
Oscilloscope/Differential amplifier | Tektronix | 7903 oscilloscope with 7A22 differential amplifier | |
Power meter with sensor | Coherent | 200 | For use below 10 W. This is the power meter shown in Figure 2. |
Power meter with sensor | Scientech, Inc | Vector S310 | For use below 30 W |
Multimeter | Fluke | 73III | Similar models are also used; Quantity = 3 |
Data acquisition | National Instruments | NI cDAQ 9174 chassis with NI 9223 input module | Uses LabVIEW software |
Simichrome polish | Happich GmbH | Polish for the Nickel base used in the MIM diode detector. Although the Nickel base can be used immediately after polishing, a 12 hour lead time is typically recommended. | |
Pressure gauge | Wallace and Tiernan | 61C-1D-0050 | Series 300; for CO<sub>2</sub> laser; Quantity = 3 |
Pressure gauge with controller | Granville Phillips | Series 375 | For far-infrared laser |
Zirconium Oxide felt | Zircar Zirconia | ZYF felt | Used as a beam stop |
Zirconium Oxide board | Zircar Zirconia | ZYZ-3 board | Used as a beam stop; Quantity = 4 |
Teflon sheet | Scientific Commodities, Inc | BB96312-1248 | 1/32 inch thick; used for the far-infrared laser output window |
Polypropylene | C-Line sheet protectors | 61003 | used for the far-infrared laser output window |
Vacuum grease | Apiezon | ||
Power supply | Kepco | NTC 2000 | PZT power supply |
PZT tube | Morgan Advanced Materials | 1 inch length, 1 inch outer diameter, 0.062 inch thickness, reverse polarity (positive voltage on outside); Quantity = 3 | |
ZnSe (AR coated) | II-VI Inc | CO<sub>2</sub> laser window (Quantity = 3), lens, and beam splitter (Quantity 3) | |
NaCl window | Edmond Optics | Quantity = 1 | |
CaF window | Edmond Optics | Quantity = 2 | |
Laser mirrors and gratings | Hyperfine, Inc | Gold-coated; includes positioning mirrors | |
Glass laser tubes and reference cells | Allen Scientific Glass | ||
MIM diode detector | Custom Microwave, Inc | ||
Other | Other materials include magnetic bases, base plates, base clamps, XYZ translation stage, etc. |