Here we describe our detailed protocol for the preparation of single-cohort honeybee colonies – a useful tool for analyzing the role-associated worker physiology. We also describe detailed protocols for treating workers with juvenile hormone and ecdysone to evaluate the involvement of these hormones in the regulation of worker behavior and/or physiology.
Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone treatment described here is appropriate for examining hormonal effects on worker physiology.
The European honeybee, Apis mellifera, is a eusocial insect with a highly organized society1. Worker honeybees (labor caste) are engaged in various tasks to maintain colony activity, and these tasks change according to the worker honeybee's age after eclosion, which is referred to as age-related division of labor2-4. Young workers (<13 days old) take care of the brood in the hive by secreting royal jelly (nurse bees), while older workers (>15 days old) collect nectar and pollen outside of the hive (foragers)2-4. The physiology of the workers changes in association with this role shift. For example, the function of the hypopharyngeal glands (HPGs), paired exocrine glands located in the head, changes in association with the role shift from nursing to foraging2,5. Nurse bee HPGs mainly synthesize major royal jelly proteins, which are major components of bee milk. On the other hand, forager HPGs mainly synthesize carbohydrate-metabolizing enzymes, such as α-glucosidase III, to process nectar into honey by converting sucrose into glucose and fructose. Our previous studies revealed that the expression of mrjp2, which encodes a major royal jelly protein, and Hbg3, which encodes α-glucosidase III, changes during the role shift6-9.
To determine whether the physiological changes in the worker tissues, including the HPGs, is associated with the role shift or with the age of the workers, it would be useful to manipulate the population composition of a honeybee colony, such as to prepare single-cohort colonies in which workers of almost the same age perform different tasks10,11. Robinson et al. (1989) described a method for establishing a single-cohort colony10. Single-cohort colonies initially comprise a queen and 0-2 day old workers. Several days after establishing the colonies, workers of almost the same age assume different tasks. Some workers perform nursing tasks as in typical colonies, whereas other workers perform foraging tasks earlier than usual and are thus called precocious foragers. Gene expression comparisons between nurse bees and precocious foragers would provide useful information about the role-associated physiology of worker tissues12-16. Here, we describe a detailed protocol for preparing single-cohort colonies for analysis of the role- and/or age-associated physiology of HPGs16. We also briefly describe how to examine the gene expression of mrjp2 and Hbg3 by quantitative reverse transcription-polymerase chain reaction (RT-PCR) to evaluate HPG physiology.
In addition to the analysis of worker physiology in single-cohort colonies, examination of the endocrine system is important for analyzing the regulatory mechanisms of role-associated worker physiology. Juvenile hormone (JH), which is known as the 'status quo' hormone in insect larvae, accelerates the shift in the role from nursing to foraging in worker honeybees11. Furthermore, ecdysone, which is known as the molting hormone during metamorphosis, might be involved in the role shift as genes encoding ecdysone signaling molecules are expressed in the mushroom bodies, a higher center of the worker brain17-19. Therefore, we also describe the detailed protocol used in our previous study16 to treat workers with 20E, which is an active form of ecdysone, and methoprene, a JH analogue, for analysis of the effect of the endocrine system on HPG physiology (expression of mrjp2 and Hbg3).
Preparation of single-cohort colonies
Here we described the protocol used in our previous study16 to prepare single-cohort colonies for analysis of HPG physiology associated with the shift in the role of worker bees. Nurse bees and precocious foragers that satisfied the criteria described in procedures 1.6-1.7 and Figure 2 were observed in the single-cohort colonies (Table 1). The photographs in Figure 2 would be useful in classific…
The authors have nothing to disclose.
This work was supported by a Grant-in-Aid for Scientific Research (B) and a Grant-in Aid for Scientific Research on Innovative Areas ‘Systems Molecular Ethology’ from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. T.U. was the recipient of a Grant-Aid from the Japan Society for the Promotion of Science for Young Scientists.
UNIPOSCA | Mitsubishi pencil | PC-5M | Marker pen for the application of marks to bees |
20-hydroxyecdysone | Sigma Aldrich | H5142 | |
Methoprene | Sigma Aldrich | 33375 | |
Breeding case insect | IRIS OHYAMA | CP-SS | |
Electromotion mixier | ISO | 23M-R25 | homogenization of tissue |
TRIZol Reagent | Invitrogen | 15596-026 | the reagent for total RNA extraction |
DNase I | Takara | 2270A | |
PrimeScript RT reagent kit | Takara | RR037A | the reagent for reverse transcription |
SYBR Premix ExTaq II | Takara | RR820A | the reagent for real-time PCR |
LightCycle 1.2 Instrument | Roche | 12011468001 | the instrument for real-time PCR |
LightCycle Capillaries (20μl) | Roche | 4929292001 | the material for real-time PCR |