We describe a protocol to isolate murine small intestinal crypts and culture intestinal 3D organoids from the crypts. Additionally, we describe a method to generate organoids from a single intestinal stem cell in the absence of a sub-epithelial cellular niche.
At present, organoid culture represents an important tool for in vitro studies of different biological aspects and diseases in different organs. Murine small intestinal crypts can form organoids that mimic the intestinal epithelium when cultured in a 3D extracellular matrix. The organoids are composed of all cell types that fulfill various intestinal homeostatic functions. These include Paneth cells, enteroendocrine cells, enterocytes, goblet cells, and tuft cells. Well-characterized molecules are added into the culture medium to enrich the intestinal stem cells (ISCs) labeled with leucine-rich repeats containing G protein-coupled receptor 5 and are used to drive differentiation down specific lineages; these molecules include epidermal growth factor, Noggin (a bone morphogenetic protein), and R-spondin 1. Additionally, a protocol to generate organoids from a single erythropoietin-producing hepatocellular receptor B2 (EphB2)-positive ISC is also detailed. In this methods article, techniques to isolate small intestinal crypts and a single ISC from tissues and ensure the efficient establishment of organoids are described.
Intestinal organoids, which were first established in 2009, have emerged as a powerful in vitro tool for studying intestinal biology given their morphological and functional similarity to mature tissues. Recently, technological advances in cultured organoids derived from adult-tissue stem cells have allowed for the long-term culture of intestinal stem cells (ISCs) with self-renewal and differentiation potential. These organoids have been widely used for basic and translational research studies on gastrointestinal physiology and pathophysiology1,2,3,4,5,6. The 3D organoids developed by the Clevers group provide a powerful tool to study the intestinal epithelium with improved physiological relevance7. Since intestinal organoids are derived from tissue stem cells and are composed of multiple cell types, they recapitulate the functionality of the intestinal epithelium. Of note, a single-sorted leucine-rich repeats-containing G protein-coupled receptor 5-positive (Lgr5+) stem cell can also generate 3D organoids without any Paneth cells or an ISC niche such as the epithelial niche or stromal niche7. However, the organoid-forming capacity of single-sorted Lgr5+ cells is low compared to those of crypt and ISC-Paneth cell doublets8.
An increasing number of studies have shown that the methods of ethylenediaminetetraacetic acid (EDTA) incubation or collagenase dissociation cause loosening in the epithelium and the release of crypts. As enzymatic dissociation may have an effect on the cell state of crypts, a mechanical isolation method is usually used to dissociate the tissue. Though mechanical digestion is a rapid technique, this method can be associated with inconsistent crypt yields or poor cell viability9. Therefore, EDTA treatment and mechanical dissociation can be combined to generate better crypt yields. A feature of the methodology shown in this article is the use of vigorous shaking of the tissue fragments after EDTA chelation10. Vigorous shaking permits the efficient isolation of crypts from crypt-villus complexes in the small intestine. The degree of manual shaking determines the separation. Thus, obtaining crypts from complexes is important for experimenters in this field. Additionally, proper skill can reduce villus contamination to a minimum and increase the number of crypts.
Hence, this experimental protocol, which employs murine-derived small intestinal organoids, can better isolate crypts with physical force after treatment with EDTA for dissociation. It is known that the expression pattern of erythropoietin-producing hepatocellular receptor B2 (EphB2) in part reflects the crypt environment. For example, EphB2-positive cells are organized from bottom to top11. Fluorescence-activated cell sorting (FACS) was carried out based on the EphB2 expression, and the cells obtained were divided into four groups: EphB2high, EphB2med, EphB2low, and EphB2neg. Then, the organoid growth from single-sorted EphB2high cells in wild-type (WT) mice was demonstrated.
This protocol describes a method for consistently isolating small intestinal crypts and the subsequent culture of 3D organoids. To improve the crypt-releasing rate, a mechanical isolation method involving vigorous shaking after treatment with EDTA was established. The medium composition is different from the original protocol of Sato et al.7. The original medium is relatively costly. Thus, a culture medium and customized media for murine small intestinal organoids containing pharmacological inhibitors, recombinant growth factors, and/or conditioned media are shown in Table 1. Wnt3A and N-acetylcysteine are not included in the culture medium in this protocol. As Paneth cells express Wnt3, the cells produce Wnt3 and support ISC maintenance. Additionally, during the course of crypt isolation, the conditioned medium is not used. The organoid model is dynamic and has cellular and structural heterogeneity (Paneth cells, enterocytes, goblet cells, enteroendocrine cells, tuft cells, and ISCs). Hence, these organoids can be used at scale to study fundamental issues of organoid biology.
The EphB2 gradient maintains ISC stemness and proliferation along the crypt-villus axis in the adult small intestine18. The advantage of making organoids from one single EphB2 cell compared to isolated crypts relates to understanding the biology of murine ISCs, as ISCs play key roles in various human intestinal disorders. Single EphB2high-expressing ISCs can be cultured to form organoids in a similar way to the development of organoids from single Lgr5-expressing ISCs. The most important step is to precisely divide the cells into four groups (EphB2high, EphB2med, EphB2low, and EphB2neg) according to the EphB2 expression in the crypts using FACS. Forward versus side scatter (FSC vs. SSC) plots are commonly used to identify cells of interest based on their size and granularity. FSC indicates the cell size, and SSC relates to the complexity or granularity of the cell in the P0 gate (Figure 2A). In this work, the cells that fell within the defined gate (P0) were subsequently analyzed for viability. Next, their viability was determined according to the negative and positive populations of 7-AAD fluorescence signals. The border between the 7-AAD-negative and -positive cells was strictly decided to gain the negative ones with minimal positive cell contamination. The EphB2 gates were roughly set based on the EphB2 graded expression.
To confirm that the four groups were precisely divided, the mRNA expression of selected genes was analyzed. The mRNA levels of ISC markers are high in EphB2high cells20. Additionally, the mRNA levels of progenitor cell-specific markers are relatively high in EphB2med cells20. However, EphB2 exdpression in EphB2low and EphB2neg cells is low or negative compared with that of EphB2high and EphB2med cells20. The preceding measures should be taken to ensure the enrichment of the EphB2high cell population before plating. However, organoid growth of less than 6% from EphB2high cells may be due to the death of stem cells during the culture process, not the vigorous shaking during the crypt isolation. It has been shown that the application of a selective Rho-associated kinase (ROCK) inhibitor to human embryonic stem cells markedly diminishes dissociation-induced apoptosis22. Thus, as a technical change, it is worth trying to add the ROCK inhibitor at a higher concentration and with a longer incubation to improve the viability.
Wnt3A-secreting Paneth cells next to ISCs provide essential support to the ISCs8. Indeed, ISC-Paneth cell doublets display a strongly increased organoid-forming capacity compared to single ISCs8. Moreover, the addition of Wnt3A at the concentration of 100 ng/mL for the first 3 days of culture has been shown to increase the organoid-forming capacity8. Thus, as another technical change, adding exogenous Wnt3A could improve the organoid-forming capacity of single EphB2high-expressing ISCs.
Compared to in vivo approaches, organoids can be easily used for genetic manipulation, the analysis of malignancy phenotypes, and drug screening20,23. A combination of EDTA chelation and a mechanical isolation method is effective, reproducible, and time-efficient for creating small intestinal organoids from crypts and can be easily followed by laboratory staff without any advanced experience. Thus, the addition of the mechanical isolation with vigorous shaking after the treatment with EDTA can efficiently establish murine small intestinal organoids ex vivo and provide a potential tool for organoid cultivation and disease modeling of other adult epithelial tissues.
Intestinal epithelial cells are polarized and orientated with the apical side directed toward the lumen. However, the apical side facing the lumen of 3D organoids is in their interior. Thus, this organization prevents access to the apical side, which is an issue when studying the effects of luminal components, such as nutrients, microbes, and metabolites on epithelial cells. To circumvent this disadvantage, a culture of organoid cells as 2D monolayers has been developed24. In terms of future applications, the culture of organoid cell monolayers will be utilized, as this represents the most efficient and tractable system.
The authors have nothing to disclose.
This work was supported by Grants-in-Aid for Scientific Research (C) to T.T. (grant numbers JP17K07495 and JP20K06751). We thank Prof. Mineko Kengaku for the use of equipment for the long-term time-lapse imaging (LCV100; Olympus).
1.5 mL Eppendorf tube | Eppendorf | 0030 125.215 | |
5 mL syringe | TERUMO | SS-05SZ | |
15 mL Falcon tube | Iwaki | 2325-015 | |
20 μm cell strainer | Sysmex | 04-004-2325 | |
24-well plate | Iwaki | 3820-024 | |
50 mL Falcon tube | Iwaki | 2345-050 | |
60 mm tissue culture dish | FALCON | 353002 | |
70 μm cell strainer | Falcon | 352350 | |
100 mm Petri dish | Iwaki | 3020-100 | |
7-AAD | BD Biosciences | 559925 | |
Advanced DMEM/F12 | Gibco | 12634-010 | |
Alexa Fluor 568 Goat Anti-Mouse IgG (H+L) | Invitrogen | A-11004 | |
Anti-EphB2 APC-conjugated antibody | BD Biosciences | 564699 | |
C57BL6/J mice | Japan SLC, Inc. | ||
Clean bench | HITACHI | CCV-1306E | |
Confocal laser scanning microscope | Olympus | FV3000 | |
EDTA (0.5 mol/L) | Nacalai Tesque | 06894-14 | 2 mM |
FACSMelody | BD Life Sciences-Biosciences | 661762 | |
Fetal bovine serum | Sigma | 173012 | 1% (v/v) |
Fiji (software) | https://fiji.sc/ | ||
Gentamicin (10 mg/mL) | Nacalai Tesque | 16672-04 | 25 μg/mL |
Hammacher laboratory scissor | SANSYO | 91-1538 | |
Incubator | Panasonic | MCO-170-PJ | |
Laboratory tweezer | AS-ONE | 7-164-04 | |
L-Glutamine 200 mM | Gibco | 25030081 | 2 mM |
Matrigel | BD Biosciences | 354230 | ECM for 3D organoids |
Mouse Anti-Human Lysozyme | LSBio | LS-B8704-100 | |
Murine EGF (20 μg/mL stock solution) | PeproTech | 315-09 | 20 ng/mL |
PBS 1x | Gibco | 10010-023 | |
Penicillin-Streptomycin (10,000 U/mL) | Gibco | 15140-122 | 50 U/mL |
Pipetman (10 μL, 20 μL, 200 μL, and 1,000 μL) | GILSON | 1-6855-12, -13, -15, and -16 | |
Recombinant murine Noggin (20 μg/mL stock solution | R&D Systems | 1967-NG-025 | 100 ng/mL |
Recombinant murine R-Spondin 1 (250 μg/mL stock solution) | R&D Systems | 3474-RS-050 | 500 ng/mL |
Sorbitol | Nacalai Tesque | 32021-95 | 2% (w/v) |
TE2000-S (inverted microscope) | Nikon | 24131 | |
Time-lapse image microscope | Olympus | LCV100 | |
TrypLE Express 1x | Gibco | 12605-010 | |
ULVAC | ULVAC KIKO Inc. | 100073 | |
Y-27632 | Fujifilm | 331752-47-7 | 10 μM |