This protocol describes an assay for the characterization of lipid droplet (LD) formation in human intestinal organoids upon stimulation with fatty acids. We discuss how this assay is used for quantification of LD formation, and how it can be used for high throughput screening for drugs that affect LD formation.
Dietary lipids are taken up as free fatty acids (FAs) by the intestinal epithelium. These FAs are intracellularly converted into triglyceride (TG) molecules, before they are packaged into chylomicrons for transport to the lymph or into cytosolic lipid droplets (LDs) for intracellular storage. A crucial step for the formation of LDs is the catalytic activity of diacylglycerol acyltransferases (DGAT) in the final step of TG synthesis. LDs are important to buffer toxic lipid species and regulate cellular metabolism in different cell types. Since the human intestinal epithelium is regularly confronted with high concentrations of lipids, LD formation is of great importance to regulate homeostasis. Here we describe a simple assay for the characterization and quantification of LD formation (LDF) upon stimulation with the most common unsaturated fatty acid, oleic acid, in human intestinal organoids. The LDF assay is based on the LD-specific fluorescent dye LD540, which allows for quantification of LDs by confocal microscopy, fluorescent plate reader, or flow cytometry. The LDF assay can be used to characterize LD formation in human intestinal epithelial cells, or to study human (genetic) disorders that affect LD metabolism, such as DGAT1 deficiency. Furthermore, this assay can also be used in a high-throughput pipeline to test novel therapeutic compounds, which restore defects in LD formation in intestinal or other types of organoids.
Lipids are a crucial component of the human diet and play an important role in systemic energy storage and metabolism. When ingested, dietary lipids are degraded into free fatty acids (FFAs) and monoglycerides (MGs) by pancreatic lipases. These substrates are then taken up by the enterocytes of the intestinal epithelium, where they are first re-esterified to diglycerides (DG) by monoglyceride acyltransferases (MGAT) enzymes and subsequently to triglycerides (TG) by diacylglycerol acyltransferase 1 (DGAT1)1. Finally, these TGs are integrated into either chylomicrons for export to the lymph system or cytosolic lipid droplets (LDs) for intracellular storage2,3. Although chylomicrons are needed to distribute dietary lipids to other organs, the importance of intracellular fat storage in LDs is not completely clear. However, LDs have been shown to perform a regulatory function in the intestine, as they slowly release lipids into the circulation up to 16 h after a meal4. Furthermore, LDs have been shown to protect against toxic fatty acid concentrations, such as in mouse adipocytes during lipolytic conditions5.
The DGAT1 protein is located on the endoplasmic reticulum (ER) membrane and plays a crucial role in LD formation in the intestinal epithelium. Homozygous mutations in DGAT1 lead to early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure upon fat intake, illustrating the importance of DGAT1 in lipid homeostasis of the human intestinal epithelium6,7,8,9,10. Since the occurrence of DGAT1-deficiency in humans is rare, access to primary patient-derived cells has been scarce. Furthermore, the long-term culture of intestinal epithelial cells has long been restricted to tumor-derived cell lines which represent the normal physiology only to a limited extend. Therefore, DGAT1-mediated LD formation has mostly been studied in fibroblasts or animal-derived cell lines7,10,11,12. As such, it was recently shown that DGAT1-deficient patient-derived fibroblasts accumulate less LDs compared to healthy control cells after stimulation with oleic acid (OA)8.
Previously, protocols were established to culture epithelial stem cells from any gastrointestinal organ in the form of three-dimensional (3D) organoids13. These intestinal organoids can be kept in culture for a long period of time13, and allow the functional study of patient- and intestinal location-specific epithelial characteristics14. They are genetically and phenotypically stable and can be stored, allowing long-term expansion and biobanking13.
We recently demonstrated that LD formation can be readily measured in human intestinal organoids in a LD formation (LDF) assay6. When exposed to OA for 16 h, organoids generate LDs to protect the cells from lipid-induced toxicity. When OA concentrations are too high, the cells die by caspase-mediated apoptosis6. The LDF assay was previously shown to be largely dependent on DGAT1 as indicated by organoids derived from DGAT1-mutant patients and by the use of DGAT1-specific inhibitors6.
For the LDF assay described in detail here, 3D organoids are cultured from intestinal biopsies and are passaged weekly by disruption into single cells that easily form new organoids. For running the LDF assay, ~7,500 organoid-derived single cells are plated in each well of a 24-well plate. Organoids are formed over several days, incubated overnight with 1 mM OA and stained with LD540, a fluorescent cell-permeable LD-specific dye that facilitates imaging. The LD formation is then quantified by confocal microscopy, fluorescent plate reader, or flow cytometry.
By scaling this LD formation assay to a 96-well format, the assay can also be used for high-throughput analysis of LD formation to screen for novel drugs which affect LD formation in human intestinal organoid cultures, or to study (human genetic) disorders that affect LD metabolism.
All experimentation using human tissues described herein was approved by the ethical committee at University Medical Center Utrecht (UMCU). Informed consent for tissue collection, generation, storage, and use of the organoids was obtained from patients at the Wilhelmina Children's Hospital (WKZ)-UMCU.
1. Preparation of Culture Media
NOTE: This protocol should be performed inside a biosafety cabinet. The organoids should be handled according to standard cell culture guidelines.
2. Culture Procedures for Human Small Intestinal Organoids
NOTE: This protocol should be performed inside a biosafety cabinet. The organoids should be handled according to standard cell culture guidelines. When handling organoids or organoid-derived cells, the cells should be kept on ice whenever possible. The cells will remain viable for a few hours after harvesting when this is ensured. Organoids should be cultured in a standard cell culture incubator at 37 °C with 5% CO2. These conditions apply to all incubation steps with organoids embedded in basement membrane matrix (BMM; i.e., Matrigel) throughout this protocol. The authors have used duodenum-derived organoids for these assays.
3. Lipid Droplet Formation Assay
For proper analysis of LD formation, the organoids should not be seeded too densely prior to stimulation with OA and subsequent staining. This is especially of importance for the confocal and plate reader readout, since overlapping organoids might interfere with the fluorescence. An example of proper organoid seeding density (Figure 1A) and a culture with overlapping organoids is shown (Figure 1B). To minimize variability in the sample stimulation with OA, the organoid size and seeding density should be comparable between samples within one experiment. This is best controlled by seeding out an equal number of single cells. However, some adjustments might be necessary if certain organoid lines consistently show a higher reconstitution efficiency and thus a consistently higher organoid count.
After stimulation with 1 mM OA overnight, LD formation can be visualized with an inverted brightfield microscope. The accumulation of LDs scatters transmitted light, and therefore the organoids appear darker, whereas non-stimulated organoids have a translucent appearance (Figure 1C). An example of LD formation as seen under a brightfield microscope is shown in Figure 1D. This phenomenon can be used to assess the experimental conditions prior to fluorescent assay readout. When the positive control sample is not visually darker than the negative control sample, or when extensive cell death is apparent, the experiment should be discarded. As FFAs are toxic to cells in higher concentrations, and the lethal concentration differs between species of FFAs, the optimum sublethal concentration that induces LD formation should be titrated for each application.
Once the OA-stimulated organoids are fixed and stained according to protocol, the LDF can be visualized using a confocal microscope. As the organoids are 3D structures, a regular epifluorescent microscope is not suitable due to the out-of-focus background signal. Therefore, we used a (maximum projection of a) confocal z-stack to characterize LDF in organoids. Figure 2A shows a representative result of LD staining in healthy control organoids that were treated with or without a DGAT1 inhibitor. Although quantification of these images is laborious, the confocal analysis serves mainly as a visualization tool to check for abnormal LD formation. Quantification of the confocal microscopy samples can also be performed using a fluorescent plate reader (Figure 2B), normalized to the fluorescent Hoechst signal. The plate reader assay indicates a significant decrease in the LD540 signal in organoids cells treated with DGAT1 inhibitor (D1i) compared to untreated organoids.
Quantification of LD formation in individual cells can be achieved using the flow cytometer. The gating strategy used for dissociated human intestinal organoids is shown in Figure 3A. The first step of gating in the FSC-A/SSC-A plot is a first selection of 'live' (when fixed), single cells. To further exclude doublets, triplets, or larger cell clumps, we included two additional gating steps on FSC-W/FSC-H and SSC-W/SSC-H. Finally, the gating on FSC-A/Hoechst ensures the exclusion of any cells that were dead or dying before fixation. Figure 3B,C shows the histograms of both the SSC-A and the LD540 signal of the final live cell population. LDF will result in an increase in SSC-A due to the formation of intracellular lipid droplets. In addition, LD540 stains for lipids that are stored in the LDs and this signal will also increase upon LDF induction. As such, LD formation is measured as a shift in the MFI of both SSC-A and LD540 (Figure 3D,E). The MFI can be plotted and used to perform statistical analysis.
Figure 1: Organoid cultures visualized by brightfield microscopy. (A,B) For the confocal and fluorescent plate reader methods, it is important that the organoids are not seeded in too high density in the BMM droplet. (A) Organoids are seeded in an appropriate density of 250 cells/µL. (B) Organoids were seeded in a too high density, causing overlapping of organoids and cell death. (C,D) After overnight stimulation with OA, LD formation can be assessed visually. (C) Organoids were incubated overnight with 12% BSA vehicle control. (D) Organoids were incubated overnight with 1 mM OA conjugated to BSA, resulting in a dark appearance. Please click here to view a larger version of this figure.
Figure 2: Representative results of LDF characterization by using confocal imaging and a fluorescent plate reader. Healthy control-derived-organoids were stimulated overnight with BSA, 1 mM OA, or 1 mM OA+D1i. (A) Maximum projection of 85 µm confocal stacks stained for DAPI (cyan) and LD540 (yellow). This subfigure is adapted from van Rijn et al.6. (B) Relative fluorescence intensity of LD540 normalized to the nuclear DAPI signal as measured by using a fluorescent plate reader. Mean ± SD is plotted for two biological replicates. Statistical significance was determined using a one-way ANOVA without repeated measures with a Tukey's post-hoc. *, P < 0.05. Please click here to view a larger version of this figure.
Figure 3: Representative results of LDF quantification using flow cytometry. Healthy control-derived-organoids were stimulated overnight with BSA, 1 mM OA, or 1 mM OA+D1i. (A) Gating strategy to select for organoid-derived single cells. From left to right, first exclude debris by gating for FSC-A/SSC-A. Then gate on FSC-W/FSC-H and SSC-W/SSC-H to exclude doublets, triplets, or larger clumps of cells. Finally, gate for FSC-A/Hoechst to select for live cells. Both the SSC-A and the LD540 channels are used to quantify LD formation. Histograms of these parameters show a shift in mean fluorescence intensity (MFI) of (B) SSC-A and (C) LD540 upon stimulation with OA. (D,E) The MFI per sample can be plotted in a graph and used to perform statistical analysis. Mean ± SD is plotted for three biological replicates. Statistical significance was determined using a one-way ANOVA without repeated measures with a Tukey's post-hoc. *, P < 0.05; **, P < 0.01; ***, P < 0.001. This figure is adapted from van Rijn et al.6. Please click here to view a larger version of this figure.
Chemical | Solvent | Stock concentration | Final concentration |
Wnt3a CM | – | 100% | 50% |
R-spondin-1 CM | – | 100% | 20% |
Noggin CM | – | 100% | 10% |
A83-01 (TGFβ-inh) | DMSO | 50 mM | 500 nM |
B27 | – | 50x | 1x |
mEGF | PBS/0.1% BSA | 500 µg/mL | 50 ng/mL |
N-acetyl | Water | 500 mM | 1.25 mM |
Nicotinamide | PBS | 1 M | 10 mM |
Primocin (use until MCB is in freezer) |
– | 50 mg/mL | 100 µg/mL |
SB202190 (P38 inh) | DMSO | 30 mM | 10 µM |
Supplemental Table 1: Recipe for organoid expansion medium.
Here, we provide a protocol to determine LD formation in human intestinal organoids upon incubation with oleic acid. This method is based on the LD-specific fluorescent dye LD54018, which allows for characterization and quantification of the total volume of lipid droplets within an organoid culture. The procedures to establish and maintain human intestinal organoid cultures have been published before13, and a visual guide of this protocol is available as well15.
The crucial steps in this protocol are the culture of human intestinal organoids, and the proper conjugation of OA to BSA. The culture of organoids requires a correct formulation of the culture medium, as the maintenance of a stem cell population is highly dependent on functional Wnt3A-CM. When Wnt3A-CM is made in-house, we recommend a highly standardized workflow and the monthly production of conditioned medium due to the expiration time of about 2 months. Furthermore, 1:1 mixing of consecutive Wnt3A-CM batches results in a more constant long-term culture, as it ensures that a slightly sub-optimal batch will not have a major impact on organoid growth.
In addition, our BM consists of advanced DMEM/F12 medium, which contains lipid-rich BSA. Since our vehicle control (12% BSA/BM) does not induce LD formation in organoids, we conclude that the amount or type of FFA in BM is not sufficient to influence the LDF assay.
The conjugation of OA to BSA is a delicate process which might require some optimization. We experienced that the protocol described here is most optimal when all temperature changes are followed meticulously and when performed using glass labware.
In previous research, LD formation assays have been used to characterize LD size and number with high magnification8,12. These assays were mostly performed using boron-dipyrromethene (BODIPY) 493/503, which provides an excellent staining for LDs with high signal-to-noise ratio. However, the emission spectrum of BODIPY is quite broad, and largely overlaps with the fluorescent spectrum of green fluorescent protein (GFP)-derived dyes. Although we expect that the current application of the LDF assay would work with BODIPY as well, the choice for LD540 allows for a broader range of multicolor images, including co-staining with GFP labels18. We also have performed this assay using the lipid stain Nile red (data not shown). However, since Nile red tends to stain not only LDs but also lipid bilayers, we found that the higher background signal of Nile red lowers the capacity of our assay to distinguish small differences of LD formation. For these reasons, we prefer to use LD540 in an organoid-based LDF assay.
Compared to earlier studies using high magnification LDF assays, the assay we describe here allows for high-throughput quantitation of total LD volume in a large population of cells. Therefore, especially the fluorescent plate reader quantitation, and potentially the flow cytometric analysis, can be scaled for testing the effect of drugs on LD formation. As we have shown that LD formation is largely DGAT1 dependent, DGAT1-deficient patient-derived or D1i-treated organoids represent a clear opportunity for the application of such a screening. Especially for such rare occurring diseases, the LDF assay combined with patient-derived organoids could provide a platform for patient-specific screening for new therapeutic drugs.
However, a consequence of a high-throughput approach is that the power to characterize individual LDs is lost. While high-magnification electron microscopic or fluorescent visualization of LDs can be used to study the dynamics in LD size and number12,19, the high-throughput approach does not distinguish between multiple small or fewer large LDs and can therefore not be used to quantify differences in LD metabolism where to total volume of LDs remains constant. Therefore, in applications where number or size of the LDs are suspected to be of interest, this should be addressed with a lower-throughput, higher magnification technique. Furthermore, the organoids in the current assay receive basolateral lipid stimulation while dietary lipids are typically taken up at the apical membrane. Some caution is therefore required if results are to be translated to the physiological situation.
The authors have nothing to disclose.
We thank B. Spee for generously providing LD540. This work was supported by a Netherlands Organization for Scientific Research grant (NWO-ZonMW; VIDI 016.146.353) to S.M.
Advanced DMEM/F12 | Gibco | 12634-028 | |
B27 supplement | Gibco | 17504-044 | |
Basement membrane matrix (matrigel) | BD Biosciences | 356231 | |
DAPI | Sigma-Aldrich | D9542-1MG | |
DGAT1 inhibitor (AZD 3988) | Tocris Bioscience | 4837/10 | |
Fatty acid free BSA | Sigma-Aldrich | A7030 | |
Formaldehyde | Klinipath | 4078-9001 | |
Glutamin (GlutaMAX, 100X) | Gibco | 15630-056 | |
HEPES (1 M) | Gibco | 15630-080 | |
laser scanning confocal microscope | Leica | SP8X | |
LD540 | kindly provided by Dr. B. Spee, Utrecht University | ||
mEGF | Peprotech | 315-09_500ug | |
N-acetyl cysteine | Sigma-Aldrich | A9165-100G | |
Nicotinamide | Sigma-Aldrich | N0636-500G | |
Noggin producing cells (HEK293-mNoggin-Fc cells) | MTA with J. den Hertog, Hubrecht Institute | ||
Oleic acid | Sigma-Aldrich | O1008-5G | |
p38 MAPK inhibitor (p38i) (SB202190) | Sigma-Aldrich | S7067-25MG | |
PBS | Sigma-Aldrich | D8662-500ML | |
PBS without Ca2+/Mg2+ | Sigma-Aldrich | D8537-500ML | |
Penicillin-Streptomycin (5,000 U/ml) | Gibco | 15070-063 | |
R-spondin producing cells (Cultrex HA-R-Spondin1-Fc 293T Cells) | R&D systems | 3710-001-01 | |
TC-treated 24 well plates | Greiner-One | 662160 | |
TC-treated black clear-bottom 96 well plates | Corning Life Sciences | 353219 | |
TGFb type I receptor inhibitor (A83-01) | Tocris Bioscience | 2939/10 | |
Trypsin (TrypLE Express) | Life Technologies | 12604021 | |
WNT-3A producing cells (L-Wnt-3A cells) | MTA with J. den Hertog, Hubrecht Institute | ||
Y-27632 dihydrochloride (Rho kinase inhibitor) | Abcam | ab120129-10 |