Summary

Mapeamento variantes da doença de Alzheimer para seus genes-alvo usando análise computacional da configuração de cromatina

Published: January 09, 2020
doi:
Please note that all translations are automatically generated. Click here for the English version.

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Disclosures

The authors have nothing to disclose.

Acknowledgements

Materials

10 kb resolution Hi-C interaction profiles in the adult brain from psychencode<a target="_blank" href="http://adult.psychencode.org/Datasets/Integrative/Promoter-anchored_chromatin_loops.bed">http://adult.psychencode.org/</a>
Developmental expression datasets<a target="_blank" href="http://www.brainspan.org/api/v2/well_known_file_download/267666527">http://www.brainspan.org/</a>
Fine-mapped credible SNPs for AD (Supplementary Table 8 from Jansen et al.<sup>14</sup>)<a target="_blank" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-018-0311-9/MediaObjects/41588_2018_311_MOESM3_ESM.xlsx">https://static-content.springer.com/</a>
HOMER<a target="_blank" href="http://homer.ucsd.edu/homer/configureHomer.pl">http://homer.ucsd.edu/</a>
R (version 3.5.0)<a target="_blank" href="https://www.r-project.org/">https://www.r-project.org/</a>
RStudio Desktop<a target="_blank" href="https://www.rstudio.com/products/rstudio/download/">https://www.rstudio.com/</a>
Single cell expression datasets<a target="_blank" href="http://adult.psychencode.org/Datasets/Derived/SC_Decomp/DER-20_Single_cell_expression_processed_TPM_backup.tsv">http://adult.psychencode.org/</a>

References

  1. Dekker, J., Misteli, T. Long-Range Chromatin Interactions. Cold Spring Harbor Perspectives in Biology. 7 (10), a019356 (2015).
  2. Sanyal, A., Lajoie, B. R., Jain, G., Dekker, J. The long-range interaction landscape of gene promoters. Nature. 489 (7414), 109-113 (2012).
  3. Plank, J. L., Dean, A. Enhancer function: mechanistic and genome-wide insights come together. Molecular Cell. 55 (1), 5-14 (2014).
  4. Dekker, J., Marti-Renom, M. A., Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Reviews Genetics. 14 (6), 390-403 (2013).
  5. Martin, P., et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nature Communications. 6, 10069 (2015).
  6. Won, H., et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature. 538 (7626), 523-527 (2016).
  7. Jäger, R., et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nature Communications. 6, 6178 (2015).
  8. Chen, J. A. A., et al. Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Molecular Neurodegeneration. 13 (1), 41 (2018).
  9. Wang, D., et al. Comprehensive functional genomic resource and integrative model for the adult brain. Science. 362 (6420), eaat8464 (2018).
  10. Demontis, D., et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics. 51 (1), 63-75 (2019).
  11. Grove, J., et al. Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics. 51 (3), 431-444 (2019).
  12. Lee, P. H., et al. Genome wide meta-analysis identifies genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. bioRxiv. , 528117 (2019).
  13. Mah, W., Won, H. The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk. Schizophrenia Research. , (2019).
  14. Jansen, I. E., et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nature Genetics. 51 (3), 404-413 (2019).
  15. Viola, K. L., Klein, W. L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathologica. 129 (2), 183-206 (2015).
  16. Mroczko, B., Groblewska, M., Litman-Zawadzka, A., Kornhuber, J., Lewczuk, P. Amyloid β oligomers (AβOs) in Alzheimer’s disease. Journal of Neural Transmission. 125 (2), 177-191 (2018).
  17. Heneka, M. T., et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurology. 14 (4), 388-405 (2015).
  18. Minter, M. R., Taylor, J. M., Crack, P. J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. Journal of Neurochemistry. 136 (3), 457-474 (2016).
  19. Hansen, D. V., Hanson, J. E., Sheng, M. Microglia in Alzheimer’s disease. The Journal of Cell Biology. 217 (2), 459-472 (2018).
  20. Gjoneska, E., et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. 518 (7539), 365-369 (2015).
  21. Benner, C., et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 32 (10), 1493-1501 (2016).
  22. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B., Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics. 198 (2), 497-508 (2014).
  23. Tewhey, R., et al. Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell. 165 (6), 1519-1529 (2016).
  24. Arnold, C. D., et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 339 (6123), 1074-1077 (2013).
  25. Kent, W. J., et al. The human genome browser at UCSC. Genome Research. 12 (6), 996-1006 (2002).
  26. Kang, H. J., et al. Spatio-temporal transcriptome of the human brain. Nature. 478 (7370), 483-489 (2011).
Mapping Alzheimer’s Disease Variants to Their Target Genes Using Computational Analysis of Chromatin Configuration

Play Video

Cite This Article
Matoba, N., Quiroga, I. Y., Phanstiel, D. H., Won, H. Mapping Alzheimer’s Disease Variants to Their Target Genes Using Computational Analysis of Chromatin Configuration. J. Vis. Exp. (155), e60428, doi:10.3791/60428 (2020).

View Video