JoVE
JoVE
Pesquisa
Comportamento
Bioquímica
Biologia
Bioengenharia
Pesquisa do Câncer
Química
Biologia do Desenvolvimento
Engenharia
Ambiente
Genética
Imunologia e Infecção
Medicina
Neurociência
JoVE Journal
JoVE Encyclopedia of Experiments
JoVE Chrome Extension
Educação
Biologia
Química
Clinical
Engenharia
Ciências Ambientais
Pharmacology
Física
Psicologia
Estatística
JoVE Core
JoVE Science Education
JoVE Lab Manual
JoVE Quiz
Centro de Recursos para Docentes
Business
Marketing
Microeconomics
Finance
Autores
Solutions
For Libraries
For Higher Education Courses
For High Schools
Entre em contato
Entrar
Entre em contato
Pesquisa
JoVE Journal
JoVE Encyclopedia of Experiments
Educação
JoVE Core
JoVE Science Education
JoVE Lab Manual
Ensino Médio
PT
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
PL - Polski
HE - עִבְרִית
RU - Русский
JA - 日本語
TR - Türkçe
AR - العربية
PT
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
PL - Polski
HE - עִבְרִית
RU - Русский
JA - 日本語
TR - Türkçe
AR - العربية
Close
Pesquisa
Comportamento
Bioquímica
Bioengenharia
Biologia
Pesquisa do Câncer
Química
Biologia do Desenvolvimento
Engenharia
Ambiente
Genética
Imunologia e Infecção
Medicina
Neurociência
Products
JoVE Journal
JoVE Encyclopedia of Experiments
Educação
Biologia
Química
Clinical
Engenharia
Ciências Ambientais
Pharmacology
Física
Psicologia
Estatística
Products
JoVE Core
JoVE Science Education
JoVE Lab Manual
JoVE Quiz
JoVE High schools
Vídeos mapeados para o seu curso
Business
Marketing
Microeconomics
Finance
Teacher Resources
Get in Touch
Instant Trial
Log In
Start Free Trial
PT
EN - English
CN - 中文
DE - Deutsch
ES - Español
KR - 한국어
IT - Italiano
FR - Français
PT - Português
PL - Polski
HE - עִבְרִית
RU - Русский
JA - 日本語
TR - Türkçe
AR - العربية
Sign-In
Start Free Trial
JoVE Journal > Genetics
Summary
Abstract
Introduction
Protocol
Results
Discussion
Disclosures
Acknowledgements
Materials
References
Genetics
Mapeamento variantes da doença de Alzheimer para seus genes-alvo usando análise computacional da configuração de cromatina
Published: January 09, 2020
doi:
10.3791/60428
Please note that all translations are automatically generated.
Click here for the English version.
Nana Matoba
1,2
,
Ivana Y. Quiroga
3
,
Douglas H. Phanstiel*
3,4
,
Hyejung Won*
1,2
1
Department of Genetics
,
University of North Carolina
2
Neuroscience Center
,
University of North Carolina
3
Thurston Arthritis Research Center
,
University of North Carolina
4
Department of Cell Biology and Physiology
,
University of North Carolina
Summary
Abstract
Introduction
Protocol
Representative Results
Discussion
Disclosures
The authors have nothing to disclose.
Acknowledgements
Materials
10 kb resolution Hi-C interaction profiles in the adult brain from psychencode
<a target="_blank" href="http://adult.psychencode.org/Datasets/Integrative/Promoter-anchored_chromatin_loops.bed">http://adult.psychencode.org/</a>
Developmental expression datasets
<a target="_blank" href="http://www.brainspan.org/api/v2/well_known_file_download/267666527">http://www.brainspan.org/</a>
Fine-mapped credible SNPs for AD (Supplementary Table 8 from Jansen et al.<sup>14</sup>)
<a target="_blank" href="https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-018-0311-9/MediaObjects/41588_2018_311_MOESM3_ESM.xlsx">https://static-content.springer.com/</a>
HOMER
<a target="_blank" href="http://homer.ucsd.edu/homer/configureHomer.pl">http://homer.ucsd.edu/</a>
R (version 3.5.0)
<a target="_blank" href="https://www.r-project.org/">https://www.r-project.org/</a>
RStudio Desktop
<a target="_blank" href="https://www.rstudio.com/products/rstudio/download/">https://www.rstudio.com/</a>
Single cell expression datasets
<a target="_blank" href="http://adult.psychencode.org/Datasets/Derived/SC_Decomp/DER-20_Single_cell_expression_processed_TPM_backup.tsv">http://adult.psychencode.org/</a>
DOWNLOAD MATERIALS LIST
References
Dekker, J., Misteli, T.
Long-Range Chromatin Interactions.
Cold Spring Harbor Perspectives in Biology
.
7
(10), a019356 (2015).
Sanyal, A., Lajoie, B. R., Jain, G., Dekker, J.
The long-range interaction landscape of gene promoters.
Nature
.
489
(7414), 109-113 (2012).
Plank, J. L., Dean, A.
Enhancer function: mechanistic and genome-wide insights come together.
Molecular Cell
.
55
(1), 5-14 (2014).
Dekker, J., Marti-Renom, M. A., Mirny, L. A.
Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.
Nature Reviews Genetics
.
14
(6), 390-403 (2013).
Martin, P., et al.
Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci.
Nature Communications
.
6
, 10069 (2015).
Won, H., et al.
Chromosome conformation elucidates regulatory relationships in developing human brain.
Nature
.
538
(7626), 523-527 (2016).
Jäger, R., et al.
Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci.
Nature Communications
.
6
, 6178 (2015).
Chen, J. A. A., et al.
Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases.
Molecular Neurodegeneration
.
13
(1), 41 (2018).
Wang, D., et al.
Comprehensive functional genomic resource and integrative model for the adult brain.
Science
.
362
(6420), eaat8464 (2018).
Demontis, D., et al.
Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder.
Nature Genetics
.
51
(1), 63-75 (2019).
Grove, J., et al.
Identification of common genetic risk variants for autism spectrum disorder.
Nature Genetics
.
51
(3), 431-444 (2019).
Lee, P. H., et al.
Genome wide meta-analysis identifies genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders.
bioRxiv
. , 528117 (2019).
Mah, W., Won, H.
The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk.
Schizophrenia Research
. , (2019).
Jansen, I. E., et al.
Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk.
Nature Genetics
.
51
(3), 404-413 (2019).
Viola, K. L., Klein, W. L.
Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis.
Acta Neuropathologica
.
129
(2), 183-206 (2015).
Mroczko, B., Groblewska, M., Litman-Zawadzka, A., Kornhuber, J., Lewczuk, P.
Amyloid β oligomers (AβOs) in Alzheimer’s disease.
Journal of Neural Transmission
.
125
(2), 177-191 (2018).
Heneka, M. T., et al.
Neuroinflammation in Alzheimer’s disease.
Lancet Neurology
.
14
(4), 388-405 (2015).
Minter, M. R., Taylor, J. M., Crack, P. J.
The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease.
Journal of Neurochemistry
.
136
(3), 457-474 (2016).
Hansen, D. V., Hanson, J. E., Sheng, M.
Microglia in Alzheimer’s disease.
The Journal of Cell Biology
.
217
(2), 459-472 (2018).
Gjoneska, E., et al.
Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease.
Nature
.
518
(7539), 365-369 (2015).
Benner, C., et al.
FINEMAP: efficient variable selection using summary data from genome-wide association studies.
Bioinformatics
.
32
(10), 1493-1501 (2016).
Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B., Eskin, E.
Identifying causal variants at loci with multiple signals of association.
Genetics
.
198
(2), 497-508 (2014).
Tewhey, R., et al.
Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay.
Cell
.
165
(6), 1519-1529 (2016).
Arnold, C. D., et al.
Genome-wide quantitative enhancer activity maps identified by STARR-seq.
Science
.
339
(6123), 1074-1077 (2013).
Kent, W. J., et al.
The human genome browser at UCSC.
Genome Research
.
12
(6), 996-1006 (2002).
Kang, H. J., et al.
Spatio-temporal transcriptome of the human brain.
Nature
.
478
(7370), 483-489 (2011).
Tags
Alzheimer’s Disease
GWAS
Target Genes
Chromatin Interaction
Computational Analysis
Risk Variants
SNPs
Gene Annotation
Expression Profiles
Developmental Trajectories
R Programming
Hi-C Datasets
Therapeutic Approaches
Play Video
PDF
DOI
DOWNLOAD MATERIALS LIST
Cite This Article
Matoba, N., Quiroga, I. Y., Phanstiel, D. H., Won, H. Mapping Alzheimer’s Disease Variants to Their Target Genes Using Computational Analysis of Chromatin Configuration.
J. Vis. Exp.
(155), e60428, doi:10.3791/60428 (2020).
Copy Citation
Download Citation
Reprints and Permissions
View Video
✖
To prove you're not a robot, please enter the text in the image below
Email:
Enable Javascript for audio controls
Enter Captcha text here:
Submit