SCIENCE EDUCATION > Engineering

Aeronautical Engineering

This collection introduces fundamental concepts in aeronautical engineering with a focus on methods to evaluate aerodynamic performance, techniques to visualize subsonic and supersonic flow patterns, and procedures to calibrate measurement systems for real-time flight control.

  • Aeronautical Engineering

    14:01
    Aerodynamic Performance of a Model Aircraft: The DC-6B

    Source: Jose Roberto Moreto and Xiaofeng Liu, Department of Aerospace Engineering, San Diego State University, San Diego, CA

    The low-speed wind tunnel is a valuable tool to study aircraft aerodynamic characteristics and evaluate aircraft performance and stability. Using a scale model of a DC-6B aircraft that has a removable tail and a 6-component external aerodynamic force balance, we can measure the lift coefficient (CL), drag coefficient (CD), pitching moment coefficient (CM), and yaw moment coefficient (CN) of the model airplane with and without its tail and evaluate the effect of the tail on aerodynamic efficiency, longitudinal stability and directional stability. In this demonstration, airplane aerodynamic characteristics and flight performance and stability are analyzed using the aerodynamic force balance measurement method. This method is widely used in aerospace industries and research labs for aircraft and rocket development. Here, a model DC-6B airplane is analyzed at different flow conditions and configurations, and its behavior is analyzed when it is subjected to sudden changes.

  • Aeronautical Engineering

    11:37
    Propeller Characterization: Variations in Pitch, Diameter, and Blade Number on Performance

    Source: Shreyas Narsipur, Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC

    A propeller is a twisted airfoil, where the angle of the chord changes with respect to the location, along the radial station, as shown in Figure 1. Propellers are widely used in aircraft and watercraft propulsion systems thereby necessitating detailed characterizations of propellers to design high performance vehicles.

    Figure 1. Chord, thickness, and pitch at a radial station. One of the defining characteristics of a propeller is the pitch/twist. The pitch of the propeller, generally given in units of length, is the theoretical distance the propeller will travel through the air in one single revolution. However, due to the drag force on the aircraft and the propeller, the propeller never travels its theoretical distance. The actual distance travelled is referred to as the effective pitch of the propeller, and the difference between the theoretical or geometric pitch and the effective pitch is referred to as propeller slip, as illustrated in Figure 2. Figure 2. Representation of pitch and slip. In this demonstration, seven propellers are characterized using a propeller test rig in a subsonic wind tunnel. This is followed by a detailed parametric study to analyze the effects of variations in pitch, diameter, and number of blades on propeller performance.

  • Aeronautical Engineering

    07:59
    Airfoil Behavior: Pressure Distribution over a Clark Y-14 Wing

    Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

    An airfoil is a 2-dimensional wing section that represents critical wing performance characteristics. The pressure distribution and lift coefficient are important parameters that characterize the behavior of airfoils. The pressure distribution is directly related to the lift generated by airfoils. A Clark Y-14 airfoil, which is used in this demonstration, has a thickness of 14% and is flat on the lower surface from 30% of chord length to the back. Here we will demonstrate how the pressure distribution around an airfoil is measured using a wind tunnel. A Clark Y-14 airfoil model with 19 pressure ports is used to collect pressure data, which is used to estimate the lift coefficient.

  • Aeronautical Engineering

    09:17
    Clark Y-14 Wing Performance: Deployment of High-lift Devices (Flaps and Slats)

    Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

    A wing is the major lift-generating apparatus in an airplane. Wing performance can be further enhanced by deploying high-lift devices, such as flaps (at the trailing edge) and slats (at the leading edge) during takeoff or landing.

    In this experiment, a wind tunnel is utilized to generate certain airspeeds, and a Clark Y-14 wing with a flap and slat is used to collect and calculate data, such as the lift, drag and pitching moment coefficient. A Clark Y-14 airfoil is shown in Figure 1 and has a thickness of 14% and is flat on the lower surface from 30% of the chord to the back. Here, wind tunnel testing is used to demonstrate how the aerodynamic performance of a Clark Y-14 wing is affected by high-lift devices, such as flaps and slats. Figure 1. Clark Y-14 airfoil profile.

  • Aeronautical Engineering

    09:23
    Turbulence Sphere Method: Evaluating Wind Tunnel Flow Quality

    Source: Jose Roberto Moreto and Xiaofeng Liu, Department of Aerospace Engineering, San Diego State University, San Diego, CA

    Wind tunnel tests are useful in the design of vehicles and structures that are subjected to airflow during their use. Wind tunnel data are generated by applying a controlled air flow to a model of the object being studied. The test model usually has a similar geometry but is a smaller scale compared to the full-sized object. To ensure accurate and useful data is collected during low speed wind tunnel tests, there must be a dynamic similarity of the Reynolds number between the tunnel flow field over the testing model and the actual flow field over the full-sized object. In this demonstration, wind tunnel flow over a smooth sphere with well-defined flow characteristics will be analyzed. Because the sphere has well-defined flow characteristics, the turbulence factor for the wind tunnel, which correlates the effective Reynolds number to the test Reynolds number, can be determined, as well as the free-stream turbulence intensity of the wind tunnel.

  • Aeronautical Engineering

    08:56
    Cross Cylindrical Flow: Measuring Pressure Distribution and Estimating Drag Coefficients

    Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

    The pressure distributions and drag estimations for cross cylindrical flow have been investigated for centuries. By ideal inviscid potential flow theory, the pressure distribution around a cylinder is vertically symmetric. The pressure distribution upstream and downstream of the cylinder is also symmetric, which results in a zero-net drag force. However, experimental results yield very different flow patterns, pressure distributions and drag coefficients. This is because the ideal inviscid potential theory assumes irrotational flow, meaning viscosity is not considered or taken into account when determining the flow pattern. This differs significantly from reality. In this demonstration, a wind tunnel is utilized to generate a specified airspeed, and a cylinder with 24 ports of pressure is used to collect pressure distribution data. This demonstration illustrates how the pressure of a real fluid flowing around a circular cylinder differs from predicted results based on the potential flow of an idealized fluid. The drag coefficient will also be estimated and compared to the predicted value.

  • Aeronautical Engineering

    10:21
    Nozzle Analysis: Variations in Mach Number and Pressure Along a Converging and a Converging-diverging Nozzle

    Source: Shreyas Narsipur, Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC

    A nozzle is a device that is commonly used to accelerate or decelerate flow by virtue of its varying cross-section. Nozzles are widely used in aerospace propulsion systems. In rockets, propellant that is ejected from the chamber is accelerated through a nozzle to create a reaction force that propels the system. In jet engines, a nozzle is used to transform energy from a high-pressure source into kinetic energy of the exhaust to produce thrust. The isentropic model along the nozzle is sufficient for a first-order analysis as the flow in a nozzle is very rapid (and thus adiabatic to a first approximation) with very little frictional loses (because the flow is nearly one-dimensional with a favorable pressure gradient, except if shock waves form and nozzles are relatively short). In this experiment, two types of nozzles are mounted on a nozzle test rig, and a pressure flow is created using a compressed air source. The nozzles are run for different back-pressure settings to analyze the internal flow in the nozzles under varying flow conditions, identify the various flow regimes, and compare the data to theoretical predictions.

  • Aeronautical Engineering

    07:34
    Schlieren Imaging: A Technique to Visualize Supersonic Flow Features

    Source: Jose Roberto Moreto, Jaime Dorado, and Xiaofeng Liu, Department of Aerospace Engineering, San Diego State University, San Diego, CA

    Military jet fighters and projectiles can fly at incredible speeds that exceed the speed of sound, which means they are traveling at a supersonic speed. The speed of sound is the speed at which a sound wave propagates through a medium, which is 343 m/s. Mach numbers are used to gauge the flight speed of an object relative to the speed of sound. An object traveling at the speed of sound would have a Mach number of 1.0, whereas an object traveling faster than the speed of sound has a Mach number greater than 1.0. The compressibility effects of air must be accounted for when traveling at such speeds. A flow is considered compressible when the Mach number is greater than 0.3. In this demonstration, Mach 2.0 supersonic flow over a cone will be analyzed by visualizing the formation of shock waves and compression waves in compressible flow using a Schlieren system.

  • Aeronautical Engineering

    07:00
    Flow Visualization in a Water Tunnel: Observing the Leading-edge Vortex Over a Delta Wing

    Source: Jose Roberto Moreto, Gustaaf Jacobs and Xiaofeng Liu, Department of Aerospace Engineering, San Diego State University, San Diego, California

    The delta wing, shown in Figure 1D, is a popular design in high-speed airplanes due to its superb performance in transonic and supersonic flight regimes. This type of wing has a small aspect ratio and high sweep angle, which reduces drag at high subsonic, transonic and supersonic flight regimes. The aspect ratio is defined as the wing span divided by the average chord . An important advantage of the delta wing is its high stall angle. The stall of a delta wing is delayed compared to the stall of a high aspect ratio wing. This is because the lift of a delta wing is enhanced by the leading-edge vortex over the wing. An effective way to observe this vortex flow phenomenon and study the vortex breakdown in a delta wing is by visualizing the flow in a water tunnel. By injecting dye in the flow surrounding a model from dye ports on the leading-edge, the vortex development and breakdown can be observed and its position measured. The data can also be used to estimate the stall angle. Figure 1. Typical wing planform shapes: A) Rectangular, with constant chord along span, B) elliptical, C) tapered, with variable chord along the span, and D) delta wing, an aft-swept wing with zero taper ratio.

  • Aeronautical Engineering

    08:12
    Surface Dye Flow Visualization: A Qualitative Method to Observe Streakline Patterns in Supersonic Flow

    Flow visualization around or on a body is an important tool in aerodynamics research. It provides a method to qualitatively and quantitatively study flow structure, and it also helps researchers theorize and verify fluid flow behavior. Flow visualization can be divided into two categories: off-the-surface visualization and surface flow visualization. Off-the-surface flow visualization techniques involve determining the flow characteristics around the body of interest. They include but are not restricted to particle image velocimetry (PIV), Schlieren imaging, and smoke flow visualization. These techniques can provide qualitative as well as quantitative data on the flow around a body. However, these techniques are generally expensive and difficult to set-up. Surface flow visualization techniques, on the other hand, involve coating the body of interest with a dye to study flow on the surface. These techniques, which are more invasive in practice, include dye flow visualization and, more recently, use pressure-sensitive paint, which gives a detailed image of the flow on the body's surface. This allows researchers to visualize different flow features, including laminar bubbles, boundary layer transitions, and flow separation. Dye flow visualization, the technique of interest in the current experiment, provides a qualitative picture of the surface flow and is one of the simplest and most cost-effective surface flow visual

  • Aeronautical Engineering

    07:27
    Pitot-static Tube: A Device to Measure Air Flow Speed

    Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

    A Pitot-static tube is widely used for measuring unknown speeds in air flow, for example, it is used to measure airplane airspeed. By Bernoulli's principle, airspeed is directly related to variations in pressure. Therefore, the Pitot-static tube senses the stagnation pressure and static pressure. It is connected to a manometer or pressure transducer to obtain pressure readings, which allows airspeed prediction. In this experiment, a wind tunnel is utilized to generate certain airspeeds, which is compared against Pitot-static tube predictions. The sensitivity of the Pitot-static tube due to misalignment with respect to flow direction is also investigated. This experiment will demonstrate how air flow speed is measured using a Pitot-static tube. The goal will be to predict the air flow speed based on the pressure measurements obtained.

  • Aeronautical Engineering

    09:28
    Constant Temperature Anemometry: A Tool to Study Turbulent Boundary Layer Flow

    Source: Xiaofeng Liu, Jose Roberto Moreto, and Jaime Dorado, Department of Aerospace Engineering, San Diego State University, San Diego, California

    A boundary layer is a thin flow region immediately adjacent to the surface of a solid body immersed in flow field. In this region, viscous effects, such as the viscous shear stress, dominate, and the flow is retarded due to the influence of friction between the fluid and the solid surface. Outside of the boundary layer, the flow is inviscid, i.e., there is no dissipative effects due to friction, thermal conduction or mass diffusion. The boundary layer concept was introduced by Ludwig Prandtl in 1904, which enables significant simplification to the Navier-Stokes (NS) equation for the treatment of flow over a solid body. Inside the boundary layer, the NS equation is reduced to the boundary layer equation, while outside of the boundary layer, the flow can be described by the Euler equation, which is a simplified version of the NS equation. Figure 1. Boundary layer development over a flat plate. The simplest case for boundary layer development occurs on a flat plate at zero angle of incidence. When considering boundary layer development on a flat plate, the velocity outside of the boundary layer is constant so that the pressure gradient along the wall is considered to be zero. The boundary layer, which naturally develops on a solid body s

  • Aeronautical Engineering

    08:11
    Pressure Transducer: Calibration Using a Pitot-static Tube

    Source: Shreyas Narsipur, Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC

    Fluid pressure is an important flow characteristic that is required to determine the aerodynamics of a system. One of the oldest and still existing pressure measurement systems is the manometer due to its accuracy and simplicity of operation. The manometer is generally a U-shaped glass tube that is partially filled with liquid, as shown in Figure 1. The U-tube manometer requires no calibration because it does not have any moving parts, and its measurements are functions of gravity and the liquid's density. Therefore, the manometer is a simple and accurate measurement system. Figure 1. Schematic of a U-tube manometer. Real-time pressure measurements are obtained in aircraft by connecting the stagnation and static pressure ports of a pitot-static probe, a device that is commonly used to measure fluid flow pressure, to the ports of a pressure measurement device. This allows pilots to obtain existing flight conditions and to warn them if any changes to the flight conditions occur. While manometers provide very accurate pressure readings, they are inherently bulky. A more realistic solution is needed to measure aircraft pressures, as one of the primary design objectives is to keep the overall aircraft weight as low as possible. Today, electromechanical pressure transducers, which convert the ap

  • Aeronautical Engineering

    08:36
    Real-time Flight Control: Embedded Sensor Calibration and Data Acquisition

    Source: Ella M. Atkins, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI

    Overview

    Autopilot allows aircraft to be stabilized using data collected from onboard sensors that measure the aircraft’s orientation, angular velocity, and airspeed. These quantities can be adjusted by the autopilot so that the aircraft automatically follows a flight plan from launch (takeoff) through recovery (landing). Similar sensor data is collected to control all types of aircraft, from large fixed-wing commercial transport aircraft to small-scale multiple-rotor helicopters, such as the quadcopter with four thruster units. With inertial position and velocity captured by a sensor such as the Global Positioning System (GPS), the autopilot real-time flight control system enables a multicopter or fixed-wing aircraft to stabilize its attitude and airspeed to follow a prescribed trajectory. Sensor integration, calibration, data acquisition, and signal filtering are prerequisites for experiments in flight control. Here we describe a sensor suite that provides the necessary data for flight control. Signal interfaces and data acquisition on two different embedded computer platforms are described, and sensor calibration is summarized. Single-channel moving average and median filters are applied to each data channel to reduce high-frequency signal noise and eliminate outliers. In this e

  • Aeronautical Engineering

    09:48
    Multicopter Aerodynamics: Characterizing Thrust on a Hexacopter

    Source: Prashin Sharma and Ella M. Atkins, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI

    Multicopters are becoming popular for a variety of hobby and commercial applications. They are commonly available as quadcopter (four thrusters), hexacopter (six thrusters), and octocopter (eight thrusters) configurations. Here, we describe an experimental process to characterize the multicopter performance. A modular small hexacopter platform providing propulsion unit redundancy is tested. The individual static motor thrust is determined using a dynamometer and varying propeller and input commands. This static thrust is then represented as a function of motor RPM, where the RPM is determined from motor power and control input. The hexacopter is then mounted on a load cell test stand in a 5’ x 7’ low-speed recirculating wind tunnel, and its aerodynamic lift and drag force components were characterized during flight at varying motor signals, free-stream flow speed, and angle of attack. A hexacopter was selected for this study because of its resilience to motor (propulsion unit) failure, as reported in Clothier1. Along with redundancy in the propulsion system, the selection of high-reliability components is also required for safe flight, particularly for missions over-populated regions. In Ampatis2, the authors discuss the optimal selection of multicop

JoVE IN THE CLASSROOM

PROVIDE STUDENTS WITH THE TOOLS TO HELP THEM LEARN.

JoVE IN THE CLASSROOM