-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Cell Biology
Covalently Linked Protein Regulators
Covalently Linked Protein Regulators
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Covalently Linked Protein Regulators

6.8: Covalently Linked Protein Regulators

1,821 Views
02:04 min
April 30, 2023

Overview

Proteins can undergo many types of post-translational modifications, often in response to changes in their environment. These modifications play an important role in the function and stability of these proteins. Covalently linked molecules include functional groups, such as methyl, acetyl, and phosphate groups, and also small proteins, such as ubiquitin. There are around 200 different types of covalent regulators that have been identified.

These groups modify specific amino acids in a protein. Phosphate groups can only be covalently attached to the amino acids serine, threonine, and tyrosine, whereas methyl and acetyl groups can only be linked to lysine. These groups are added to and removed from a protein by an enzyme or pair of enzymes. For example, an acetyltransferase adds an acetyl group to a protein, and a deacetylase can remove it. Each of these modifiers can have different effects on the protein to which it is attached depending on the number and location of the modifications. When a single ubiquitin molecule is covalently linked to a certain cell surface receptor, this protein is targeted for endocytosis; on the other hand, when multiple ubiquitins linked together are attached to this protein, it is marked as a target for proteolytic degradation.

A single protein can undergo multiple modifications simultaneously to control its function. One well-known example of a protein regulated by multiple covalent modifications is the tumor-suppressor protein, p53. p53 undergoes a variety of modifications in response to various types of stress, including radiation and carcinogens. Some modifications include phosphorylation, acetylation, and sumoylation in response to UV and gamma radiations. The sites and types of modifications can vary depending on the stressor. Studies have shown that UV and gamma radiation can result in the phosphorylation of serine 33, but serine 392 can be phosphorylated when exposed to UV but not gamma radiation. Other kinds of stress, such as exposure to hypoxia, anti‐metabolites, and actinomycin D, can result in the acetylation of p53. The modifications can also vary between different cell types and organisms.

Transcript

Many proteins are regulated by covalently linked molecules, including functional groups, such as methyl or acetyl moieties, and small proteins, such as ubiquitin.

Covalent linkages occur on specific amino acids in the polypeptide chain. For example, phosphate groups are covalently linked to serine, threonine, or tyrosine; methyl and acetyl groups are linked to lysine; and ubiquitin is linked to lysine, cysteine, serine, or threonine residues.

An enzyme or pair of enzymes reversibly catalyzes these post-translational modifications.  An acetyltransferase can acetylate a protein, while a deacetylase can later remove the group.

These modifications can alter a protein’s function or localization in a cell.

For example, acetylation of histone proteins regulates gene expression by opening up the DNA structure to activate gene transcription. Methylation of histone proteins, on the other hand, is known to repress transcription by tightening the structure. 

Another example is p53, a multidomain tumor suppressor protein that undergoes several covalent modifications in response to stress. Exposure to DNA damaging agents, such as UV and gamma radiation, can result in phosphorylation of the protein. 

Phosphorylation improves stability and activates p53, causing it to bind to DNA damaged by the radiation and prevents cells with mutated DNA from dividing uncontrollably.

In addition to phosphorylation, different types of modifications occurring on a single protein molecule, such as p53, allow it to precisely control its functions such as cell cycle arrest, DNA repair, and apoptosis of a cell.

Key Terms and Definitions

  • Post-Translational Modification - Covalent modifications made to proteins after synthesis.
  • Covalently Linked Proteins - Proteins that have been chemically bonded together.
  • Protein Degradation - The process by which proteins are broken down in cells.
  • Covalent Regulation - Control of protein function by adding/removing chemical groups.
  • Ubiquitination - A post-translational modification involving the attachment of ubiquitin to proteins.

Learning Objectives

  • Define Post-Translational Modification - The changes made to proteins after they are synthesized (e.g., covalently linked).
  • Contrast Pre and Post-Translational Modification - Understand the differences and unique functions (e.g., covalent regulation vs ubiquitination).
  • Explore Examples - How proteins are targeted for degradation (e.g., ubiquitination).
  • Explain the Process - How post-translational modifications regulate protein functions.
  • Apply in Context - How post-translational modifications impact biological systems.

Questions that this video will help you answer

  • What is Post-Translational Modification and why is it important?
  • What are the different types of Post-Translational Modifications?
  • How does Post-Translational Modification regulate protein function?

This video is also useful for

  • Students - Grasp the complex nature of protein structure and function.
  • Educators - Provides a detailed overview of an advanced topic in molecular biology.
  • Researchers - Essential understanding for genetic research and drug discovery efforts.
  • Science Enthusiasts - Delve into the intricacies of protein regulation and modification.

Explore More Videos

Covalent LinkageProtein RegulatorsProtein InteractionsBiochemical RegulationCovalent ModificationProtein DynamicsRegulatory Mechanisms

Related Videos

Ligand Binding Sites

02:40

Ligand Binding Sites

Protein Function

8.3K Views

Protein-Protein Interfaces

02:04

Protein-Protein Interfaces

Protein Function

4.2K Views

Conserved Binding Sites

01:49

Conserved Binding Sites

Protein Function

1.8K Views

Cofactors and Coenzymes

01:24

Cofactors and Coenzymes

Protein Function

12.2K Views

Cooperative Allosteric Transitions

01:58

Cooperative Allosteric Transitions

Protein Function

2.5K Views

Protein Kinases and Phosphatases

02:54

Protein Kinases and Phosphatases

Protein Function

4.0K Views

GTPases and their Regulation

02:14

GTPases and their Regulation

Protein Function

2.6K Views

Covalently Linked Protein Regulators

02:04

Covalently Linked Protein Regulators

Protein Function

1.8K Views

Protein Complexes with Interchangeable Parts

01:57

Protein Complexes with Interchangeable Parts

Protein Function

2.0K Views

Mechanical Protein Function

01:58

Mechanical Protein Function

Protein Function

2.2K Views

Structural Protein Function

01:56

Structural Protein Function

Protein Function

3.0K Views

Protein Networks

02:26

Protein Networks

Protein Function

2.6K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code