O objetivo deste estudo é desenvolver um novo modelo digital 3D de nódulos pulmonares que sirva como ponte de comunicação entre médicos e pacientes e seja também uma ferramenta de ponta para avaliação pré-diagnóstica e prognóstica.
A reconstrução tridimensional (3D) de nódulos pulmonares por meio de imagens médicas introduziu novas abordagens técnicas para o diagnóstico e tratamento de nódulos pulmonares, e essas abordagens estão sendo progressivamente reconhecidas e adotadas por médicos e pacientes. No entanto, a construção de um modelo digital 3D relativamente universal de nódulos pulmonares para diagnóstico e tratamento é um desafio devido às diferenças de dispositivos, tempos de disparo e tipos de nódulos. O objetivo deste estudo é propor um novo modelo digital 3D de nódulos pulmonares que sirva de ponte entre médicos e pacientes e seja também uma ferramenta de ponta para avaliação pré-diagnóstica e prognóstica. Muitos métodos de detecção e reconhecimento de nódulos pulmonares guiados por IA empregam técnicas de aprendizado profundo para capturar as características radiológicas dos nódulos pulmonares, e esses métodos podem alcançar um bom desempenho de área abaixo da curva (AUC). No entanto, falsos positivos e falsos negativos continuam sendo um desafio para radiologistas e clínicos. A interpretação e a expressão das características do ponto de vista da classificação e do exame dos nódulos pulmonares ainda são insatisfatórias. Neste estudo, um método de reconstrução contínua 3D de todo o pulmão em posições horizontal e coronal é proposto combinando as tecnologias de processamento de imagens médicas existentes. Comparado com outros métodos aplicáveis, este método permite localizar rapidamente os nódulos pulmonares e identificar suas propriedades fundamentais, ao mesmo tempo em que observa os nódulos pulmonares sob múltiplas perspectivas, fornecendo assim uma ferramenta clínica mais eficaz para o diagnóstico e tratamento de nódulos pulmonares.
A incidência global de nódulos pulmonares é variável, mas geralmente estima-se que cerca de 30% dos adultos tenham pelo menos um nódulo pulmonar visível nas radiografias detórax1. A incidência de nódulos pulmonares é maior em populações específicas, como fumantes pesados e aqueles com história de câncer de pulmão ou outras doenças pulmonares. É importante ressaltar que nem todos os nódulos pulmonares são malignos, mas uma avaliação completa é necessária para descartarmalignidade2. A detecção e o diagnóstico precoces do câncer de pulmão são cruciais para melhorar as taxas de sobrevida, e o rastreamento regular com tomografia computadorizada de baixa dose (TCLD) é recomendado para indivíduos de alto risco. Muitos métodos de detecção e reconhecimento de nódulos pulmonares guiados por IA3,4,5,6,7 empregam técnicas de aprendizado profundo para capturar as características radiológicas dos nódulos pulmonares, e esses métodos podem alcançar um bom desempenho na área sob a curva (AUC). No entanto, falsos positivos e falsos negativos continuam sendo um desafio para radiologistas e clínicos. A interpretação e a expressão das características do ponto de vista da classificação e do exame dos nódulos pulmonares ainda são insatisfatórias. Ao mesmo tempo, a reconstrução 3D de nódulos pulmonares baseada na TCLD tem ganhado cada vez mais atenção como modelo digital para vários tipos de nódulos.
A reconstrução 3D de nódulos pulmonares é um processo que gera uma representação 3D de um pequeno crescimento ou caroço no pulmão. Esse processo normalmente envolve a aplicação de técnicas de análise de imagens médicas que aproveitam a perícia médica e as abordagens de inteligência de dados. O modelo digital 3D resultante oferece uma representação mais detalhada e precisa do nódulo, permitindo melhor visualização e análise de seu tamanho, forma e relação espacial com os tecidos pulmonarescircundantes 8,9,10,11,12. Essas informações podem auxiliar no diagnóstico e monitoramento de nódulos pulmonares, principalmente aqueles com suspeita de câncer. Ao facilitar análises mais precisas, a reconstrução 3D de nódulos pulmonares tem o potencial de aumentar a acurácia do diagnóstico e informar decisões terapêuticas.
A projeção de intensidade máxima (MIP) é uma técnica popular no campo da reconstrução 3D de nódulos pulmonares e é usada para criar uma projeção 2D de uma imagem 3D 8,9,10,11,12 É particularmente útil na visualização de dados volumétricos extraídos de arquivos de imagem digital e comunicações em medicina (DICOM) digitalizados por TC. A técnica MIP funciona selecionando os voxels (as menores unidades de dados de volume 3D) com a maior intensidade ao longo da direção de visualização e projetando-os em um plano 2D. Isso resulta em uma imagem 2D que enfatiza as estruturas de maior intensidade e suprime aquelas de menor intensidade, o que facilita a identificação e análise de características relevantes 9,10,11,12. No entanto, a PImáx não está isenta de limitações. Por exemplo, o processo de projeção pode resultar em uma perda de informações, e a imagem 2D resultante pode não representar com precisão a estrutura 3D do objeto subjacente. No entanto, a MIP continua sendo uma ferramenta valiosa para imagens médicas e visualização, e seu uso continua a evoluir com os avanços da tecnologia e do poder computacional11.
Neste estudo, desenvolve-se um modelo sucessivo de PImáx para visualização de nódulos pulmonares, de fácil utilização, fácil de usar para radiologistas, médicos e pacientes, e que permite identificar e estimar as propriedades dos nódulos pulmonares. As principais vantagens dessa abordagem de processamento incluem os seguintes aspectos: (1) eliminação de falsos positivos e falsos negativos decorrentes do reconhecimento de padrões, o que permite um foco no auxílio médico para obter informações mais abrangentes sobre a localização, forma e tamanho 3D dos nódulos pulmonares, bem como sua relação com a vasculatura circundante; (2) capacitar os médicos especialistas para o conhecimento profissional das características dos nódulos pulmonares, mesmo sem o auxílio de radiologistas; e (3) melhorar a eficiência da comunicação entre médicos e pacientes e a avaliação prognóstica.
Diferentes dispositivos LDCT têm diferenças significativas nas sequências de imagens DICOM que produzem, especialmente em termos de gerenciamento do sistema de arquivos. Portanto, para reconstruir o modelo digital 3D chave de um nódulo pulmonar nos estágios mais avançados do protocolo, a etapa de pré-processamento de dados é particularmente importante. Na etapa de preparação e pré-processamento dos dados (etapa 1.2.2), a coordenada do eixo z da sequência pode ser classificada corretamente usando a sequência …
The authors have nothing to disclose.
Esta publicação foi apoiada pelo Quinto Programa Nacional de Pesquisa de Talentos Excelentes Clínicos de Medicina Tradicional Chinesa, organizado pela Administração Nacional de Medicina Tradicional Chinesa (http://www.natcm.gov.cn/renjiaosi/zhengcewenjian/2021-11-04/23082.html).
MATLAB | MathWorks | 2022B | Computing and visualization |
Tools for Modeling | Intelligent Entropy |
PulmonaryNodule V1.0 | Beijing Intelligent Entropy Science & Technology Co Ltd. Modeling for CT/MRI fusion |