Regioselective O-glycosylation of Nucleosides via the Temporary 2',3'-diol Protection by a Boronic Ester for the Synthesis of Disaccharide Nucleosides

This article has been accepted and is currently in production

Abstract

Disaccharide nucleosides, which consist of disaccharide and nucleobase moieties, have been known as a valuable group of natural products having multifarious bioactivities. Although chemical O-glycosylation is a commonly beneficial strategy to synthesize disaccharide nucleosides, the preparation of substrates such as glycosyl donors and acceptors requires a tedious protecting of group manipulations and a purification at each synthetic step. Meanwhile, several research groups have reported that boronic and borinic esters serve as a protecting or activating group of carbohydrate derivatives to achieve the regio- and/or stereoselective acylation, alkylation, silylation, and glycosylation. In this article, we demonstrate the procedure for the regioselective O-glycosylation of unprotected ribonucleosides utilizing boronic acid. The esterification of 2',3'-diol of ribonucleosides with boronic acid makes the temporary protection of diol, and, following O-glycosylation with a glycosyl donor in the presence of p-toluenesulfenyl chloride and silver triflate, permits the regioselective reaction of the 5'-hydroxyl group to afford the disaccharide nucleosides. This method could be applied to various nucleosides, such as guanosine, adenosine, cytidine, uridine, 5-metyluridine, and 5-fluorouridine. This article and the accompanying video represents useful (visual) information for the O-glycosylation of unprotected nucleosides and their analogs for the synthesis of not only disaccharide nucleosides, but also a variety of biologically relevant derivatives.