In Vitro Generation of Somite Derivatives from Human Induced Pluripotent Stem Cells

This article has been accepted and is currently in production

Abstract

In response to signals such as WNTs, bone morphogenetic proteins (BMPs), and sonic hedgehog (SHH) secreted from surrounding tissues, somites (SMs) give rise to multiple cell types, including the myotome (MYO), sclerotome (SCL), dermatome (D), and syndetome (SYN), which in turn develop into skeletal muscle, axial skeleton, dorsal dermis, and axial tendon/ligament, respectively. Therefore, the generation of SMs and their derivatives from human induced pluripotent stem cells (iPSCs) is critical to obtain pluripotent stem cells (PSCs) for application in regenerative medicine and for disease research in the field of orthopedic surgery. Although the induction protocols for MYO and SCL from PSCs have been previously reported by several researchers, no study has yet demonstrated the induction of SYN and D from iPSCs. Therefore, efficient induction of fully competent SMs remains a major challenge. Here, we recapitulate human SM patterning with human iPSCs in vitro by mimicking the signaling environment during chick/mouse SM development, and report on methods of systematic induction of SM derivatives (MYO, SCL, D, and SYN) from human iPSCs under chemically defined conditions through the presomitic mesoderm (PSM) and SM states. Knowledge regarding chick/mouse SM development was successfully applied to the induction of SMs with human iPSCs. This method could be a novel tool for studying human somitogenesis and patterning without the use of embryos and for cell-based therapy and disease modeling.