JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
JoVE Applied Physics
JoVE Applied Physics encompasses a broad range of experimental and instrumental techniques utilized in physics research. Investigations in this area strive to address and answer a broad range of scientific questions, such as device mechanisms and efficiencies, using physical tools. This approach often requires a combination of specialties, and research in this area tends to be interdisciplinary with contributions from mechanical, electrical, and chemical engineers.
 JoVE Applied Physics

Micro-masonry for 3D Additive Micromanufacturing

1Mechanical Science and Engineering, University of Illinois at Urbana-Champaign


JoVE 51974

This paper introduces a 3D additive micromanufacturing strategy (termed ‘micro-masonry’) for the flexible fabrication of microelectromechanical system (MEMS) structures and devices. This approach involves transfer printing-based assembly of micro/nanoscale materials in conjunction with rapid thermal annealing-enabled material bonding techniques.

 JoVE Applied Physics

Writing and Low-Temperature Characterization of Oxide Nanostructures

1Department of Physics, University of Pittsburgh


JoVE 51886

Oxide nanostructures provide new opportunities for science and technology. The interfacial conductivity between LaAlO3 and SrTiO3 can be controlled with near-atomic precision using a conductive atomic force microscopy technique. The protocol for creating and measuring conductive nanostructures at LaAlO3/SrTiO3 interfaces is demonstrated.

 JoVE Applied Physics

Analyzing the Movement of the Nauplius 'Artemia salina' by Optical Tracking of Plasmonic Nanoparticles

1Photonics and Optoelectronics Group, Ludwig-Maximilians-Universität


JoVE 51502

We use optical tracking of plasmonic nanoparticles to probe and characterize the frequency movements of aquatic organisms.

 JoVE Applied Physics

Coherent anti-Stokes Raman Scattering (CARS) Microscopy Visualizes Pharmaceutical Tablets During Dissolution

1Optical Sciences Group, MESA+ Institute, University of Twente, 2Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University, 3Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki


JoVE 51847

Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with an intrinsic flow-through dissolution setup to allow in situ and real-time visualization of the surface of pharmaceutical tablets undergoing dissolution. Using this custom-built setup, it is possible to correlate CARS videos with drug dissolution profiles recorded using inline UV absorption spectroscopy.

 JoVE Applied Physics

Proton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy

1Experimental Molecular Biophysics, Freie Universität Berlin


JoVE 51622

Key steps of protein function, in particular backbone conformational changes and proton transfer reactions, often take place in the microsecond to millisecond time scale. These dynamical processes can be studied by time-resolved step-scan Fourier-transform infrared spectroscopy, in particular for proteins whose function is triggered by light.

 JoVE Applied Physics

Development of a 3D Graphene Electrode Dielectrophoretic Device

1Department of Chemical Engineering, Michigan Technological University, 2Department of Mechanical Engineering, Michigan Technological University, 3XG Sciences, Inc.


JoVE 51696

A microdevice with high throughput potential is used to demonstrate three-dimensional (3D) dielectrophoresis (DEP) with novel materials. Graphene nanoplatelet paper and double sided tape were alternately stacked; a 700 μm micro-well was drilled transverse to the layers. DEP behavior of polystyrene beads was demonstrated in the micro-well.

 JoVE Applied Physics

Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue

1ILM-FENNEC UMR 5306, CNRS - Université Lyon 1, 2ILM-PUBLI UMR 5306, CNRS - Université Lyon 1, 3ILM-SOPRANO UMR 5306, CNRS - Université Lyon 1


JoVE 51353

Laser-induced breakdown spectroscopy performed on thin organ and tumor tissue successfully detected natural elements and artificially injected gadolinium (Gd), issued from Gd-based nanoparticles. Images of chemical elements reached a resolution of 100 μm and quantitative sub-mM sensitivity. The compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of a same biological tissue.

 JoVE Applied Physics

Laboratory Drop Towers for the Experimental Simulation of Dust-aggregate Collisions in the Early Solar System

1Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig


JoVE 51541

We present a technique to achieve low-velocity to intermediate-velocity collisions between fragile dust aggregates in the laboratory. For this purpose, two vacuum drop-tower setups have been developed that allow collision velocities between <0.01 and ~10 m/sec. The collision events are recorded by high-speed imaging.

 JoVE Applied Physics

Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators

1Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure, CNRS, 2State Key Laboratory of Precision Spectroscopy, East China Normal University, 3Instituto de Física, Universidade de São Paulo


JoVE 51224

We describe the reliable generation of non-Gaussian states of traveling optical fields, including single-photon states and coherent state superpositions, using a conditional preparation method operated on the non-classical light emitted by optical parametric oscillators. Type-I and type-II phase-matched oscillators are considered and common procedures, such as the required frequency filtering or the high-efficiency quantum state characterization by homodyning, are detailed.

 JoVE Applied Physics

Fabrication and Testing of Microfluidic Optomechanical Oscillators

1Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 2Electrical Engineering and Computer Science, University of Michigan, 3Biomedical Engineering, University of Michigan


JoVE 51497

Parametric optomechanical excitations have recently been experimentally demonstrated in microfluidic optomechanical resonators by means of optical radiation pressure and stimulated Brillouin scattering. This paper describes the fabrication of these microfluidic resonators along with methodologies for generating and verifying optomechanical oscillations.

More Results...
Waiting
simple hit counter