JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

In JoVE (1)

Other Publications (63)

Articles by Graham Hatfull in JoVE

 JoVE Immunology and Infection

Growth of Mycobacterium tuberculosis Biofilms

1Department of Infectious Diseases and Microbiology, University of Pittsburgh, 2Department of Biological Sciences, University of Pittsburgh


JoVE 3820

Mycobacterium tuberculosis forms drug tolerant biofilms when cultured in certain conditions. Here we describe methods for culturing M. tuberculosis biofilms and determining the frequency of drug tolerant persisters. These protocols will be useful for further studies into the mechanisms of drug tolerance in M. tuberculosis.

Other articles by Graham Hatfull on PubMed

Specialized Transduction: an Efficient Method for Generating Marked and Unmarked Targeted Gene Disruptions in Mycobacterium Tuberculosis, M. Bovis BCG and M. Smegmatis

The authors have developed a simple and highly efficient system for generating allelic exchanges in both fast- and slow-growing mycobacteria. In this procedure a gene of interest, disrupted by a selectable marker, is cloned into a conditionally replicating (temperature-sensitive) shuttle phasmid to generate a specialized transducing mycobacteriophage. The temperature-sensitive mutations in the mycobacteriophage genome permit replication at the permissive temperature of 30 degrees C but prevent replication at the non-permissive temperature of 37 degrees C. Transduction at a non-permissive temperature results in highly efficient delivery of the recombination substrate to virtually all cells in the recipient population. The deletion mutations in the targeted genes are marked with antibiotic-resistance genes that are flanked by gammadelta-res (resolvase recognition target) sites. The transductants which have undergone a homologous recombination event can be conveniently selected on antibiotic-containing media. To demonstrate the utility of this genetic system seven different targeted gene disruptions were generated in three substrains of Mycobacterium bovis BCG, three strains of Mycobacterium tuberculosis, and Mycobacterium smegmatis. Mutants in the lysA, nadBC, panC, panCD, leuCD, Rv3291c and Rv0867c genes or operons were isolated as antibiotic-resistant (and in some cases auxotrophic) transductants. Using a plasmid encoding the gammadelta-resolvase (tnpR), the resistance genes could be removed, generating unmarked deletion mutations. It is concluded from the high frequency of allelic exchange events observed in this study that specialized transduction is a very efficient technique for genetic manipulation of mycobacteria and is a method of choice for constructing isogenic strains of M. tuberculosis, BCG or M. smegmatis which differ by defined mutations.

Integration and Excision of the Mycobacterium Tuberculosis Prophage-like Element, PhiRv1

The genomes of Mycobacterium tuberculosis H37Rv and CDC1551 each contain two prophage-like elements, phiRv1 and phiRv2. The phiRv1 element is not only absent from Mycobacterium bovis BCG but is in different locations within the two sequenced M. tuberculosis genomes; in both cases phiRv1 is inserted into a REP13E12 repeated sequence, which presumably contains the bacterial attachment site, attB, for phiRv1. Although phiRv1 is probably too small to encode infectious phage particles, it may nevertheless have an active integration/excision system and be capable of moving from one chromosomal position to another. We show here that the M. tuberculosis H37Rv phiRv1 element does indeed encode an active site-specific recombination system in which an integrase of the serine recombinase family (Rv1586c) catalyses integration and excision and a small, basic phiRv1-encoded protein (Rv1584c) controls the directionality of re-combination. Integration-proficient plasmid vectors derived from phiRv1 efficiently transform BCG, can utilize four of the seven REP13E12 sites present in BCG as attachment sites, and can occupy more than one site simultaneously.

Imbroglios of Viral Taxonomy: Genetic Exchange and Failings of Phenetic Approaches

The practice of classifying organisms into hierarchical groups originated with Aristotle and was codified into nearly immutable biological law by Linnaeus. The heart of taxonomy is the biological species, which forms the foundation for higher levels of classification. Whereas species have long been established among sexual eukaryotes, achieving a meaningful species concept for prokaryotes has been an onerous task and has proven exceedingly difficult for describing viruses and bacteriophages. Moreover, the assembly of viral "species" into higher-order taxonomic groupings has been even more tenuous, since these groupings were based initially on limited numbers of morphological features and more recently on overall genomic similarities. The wealth of nucleotide sequence information that catalyzed a revolution in the taxonomy of free-living organisms necessitates a reevaluation of the concept of viral species, genera, families, and higher levels of classification. Just as microbiologists discarded dubious morphological traits in favor of more accurate molecular yardsticks of evolutionary change, virologists can gain new insight into viral evolution through the rigorous analyses afforded by the molecular phylogenetics of viral genes. For bacteriophages, such dissections of genomic sequences reveal fundamental flaws in the Linnaean paradigm that necessitate a new view of viral evolution, classification, and taxonomy.

Bacteriophage Mu Genome Sequence: Analysis and Comparison with Mu-like Prophages in Haemophilus, Neisseria and Deinococcus

We report the complete 36,717 bp genome sequence of bacteriophage Mu and provide an analysis of the sequence, both with regard to the new genes and other genetic features revealed by the sequence itself and by a comparison to eight complete or nearly complete Mu-like prophage genomes found in the genomes of a diverse group of bacteria. The comparative studies confirm that members of the Mu-related family of phage genomes are genetically mosaic with respect to each other, as seen in other groups of phages such as the phage lambda-related group of phages of enteric hosts and the phage L5-related group of mycobacteriophages. Mu also possesses segments of similarity, typically gene-sized, to genomes of otherwise non-Mu-like phages. The comparisons show that some well-known features of the Mu genome, including the invertible segment encoding tail fiber sequences, are not present in most members of the Mu genome sequence family examined here, suggesting that their presence may be relatively volatile over evolutionary time. The head and tail-encoding structural genes of Mu have only very weak similarity to the corresponding genes of other well-studied phage types. However, these weak similarities, and in some cases biochemical data, can be used to establish tentative functional assignments for 12 of the head and tail genes. These assignments are strongly supported by the fact that the order of gene functions assigned in this way conforms to the strongly conserved order of head and tail genes established in a wide variety of other phages. We show that the Mu head assembly scaffolding protein is encoded by a gene nested in-frame within the C-terminal half of another gene that encodes the putative head maturation protease. This is reminiscent of the arrangement established for phage lambda.

Microbiology. A Tail of Two Specifi-cities

The Orientation of Mycobacteriophage Bxb1 Integration is Solely Dependent on the Central Dinucleotide of AttP and AttB

Integration of the mycobacteriophage Bxb1 genome into its host chromosome is catalyzed by a serine-integrase, a member of the transposon-resolvase family of site-specific recombinases. These enzymes use a concerted mechanism of strand exchange involving double-stranded cleavages with two-base extensions, and covalent protein-DNA linkages via phosphoserine bonds. In contrast to the resolvase/invertase recombination systems--where there are strict requirements for a specific synaptic complex within which the catalytic potential of the enzyme is activated--synapsis of attP and attB by Bxb1 integrase is completely promiscuous, aligning the sites with equal proclivity in parallel and antiparallel alignments. Moreover, the catalytic potential of Bxb1 integrase is fully active in either alignment. As a consequence, the nonpalindromic central dinucleotide (5'-GT) at the center of attP and attB is the sole determinant of Bxb1 prophage orientation, and a single base pair substitution in the two sites is sufficient to eliminate orientation control.

Mycobacteriophage Bxb1 Integrates into the Mycobacterium Smegmatis GroEL1 Gene

Mycobacteriophage Bxb1 is a temperate phage of Mycobacterium smegmatis and forms stable lysogens in which the Bxb1 genome is integrated into the host chromosome. Bxb1 encodes an integrase of the large serine recombinase family that catalyses integration and excision of the Bxb1 genome. We show here that Bxb1 integrates into a chromosomal attB site located within the 3' end of the groEL1 gene such that integration results in alteration of the C-terminal 21 amino acid residues. An integration-proficient plasmid vector containing the Bxb1 integrase gene and flanking DNA sequences efficiently transforms M. smegmatis via integration at attB. Bxb1-integrated recombinants are stable and fully compatible with L5 integration vectors. Strand exchange occurs within an 8 bp common core sequence present in attB and within an attP site situated immediately upstream of the phage integrase gene. Establishment of a defined in vitro system for Bxb1 integration shows that recombination occurs efficiently without requirement for high-energy cofactors, divalent metals, DNA supercoiling or additional proteins.

Rapid Identification and Susceptibility Testing of Mycobacterium Tuberculosis from MGIT Cultures with Luciferase Reporter Mycobacteriophages

In a prospective study conducted in a diagnostic laboratory in Mexico City, luciferase reporter mycobacteriophages (LRPs) were evaluated for their utility and performance in identification and antibiotic-susceptibility testing of Mycobacterium tuberculosis complex (MTC) isolates from MGIT-960 cultures. Eighty-four consecutive MGIT cultures recovered from 54 patients were included in this study. The LRPs confirmed mycobacterial growth in 79 (94 %) of 84 MGIT cultures. Failure to confirm growth was due to low inoculum (n = 1) or growth with non-tuberculous mycobacteria (n = 4). The median time to confirmation of MGIT cultures was 1 day (range 1-55). Confirmed cultures were identified with p-nitro-alpha-acetylamino-beta-hydroxypropiophenone (NAP), a selective inhibitor of MTC species, and results obtained with LRPs were compared with those obtained by BACTEC-460. The sensitivity and specificity of the LRP NAP test were respectively 97 and 100 %, and the median turnaround time for identification was 3 days with both methods. The accuracy and speed of the LRPs for susceptibility testing with rifampicin, streptomycin, isoniazid and ethambutol were compared with BACTEC-460 and discrepant results were tested by the conventional agar proportion method. In total, 72 MTC cultures were tested. The overall agreement between the LRPs and BACTEC-460 was 98.6 %. Four isolates (5.6 %) were falsely identified as ethambutol-resistant. The median turnaround time for susceptibility testing was 3 days (range 3-57) with the LRPs and 9 days (range 7-29) with BACTEC-460. LRPs offer an accurate and rapid approach for identification and susceptibility testing of M. tuberculosis from MGIT-960 cultures.

Bacteriophages with Tails: Chasing Their Origins and Evolution

Comparative genomic analysis of the tailed bacteriophages shows that they are genetically mosaic with respect to each other, implying that horizontal exchange of sequences is an important component of their evolution. Horizontal exchange occurs intensively among closely related phages but also at reduced frequency across the entire population of tailed phages. It results in exchange of homologous functions, exchange of analogous but non-homologous functions as with the prophage integrases, and introduction of novel functions into the genome as with the morons. Extrapolation of these processes back in evolutionary time leads to a speculative model for the origins and early evolution of phages.

Origins of Highly Mosaic Mycobacteriophage Genomes

Bacteriophages are the most abundant organisms in the biosphere and play major roles in the ecological balance of microbial life. The genomic sequences of ten newly isolated mycobacteriophages suggest that the bacteriophage population as a whole is amazingly diverse and may represent the largest unexplored reservoir of sequence information in the biosphere. Genomic comparison of these mycobacteriophages contributes to our understanding of the mechanisms of viral evolution and provides compelling evidence for the role of illegitimate recombination in horizontal genetic exchange. The promiscuity of these recombination events results in the inclusion of many unexpected genes including those implicated in mycobacterial latency, the cellular and immune responses to mycobacterial infections, and autoimmune diseases such as human lupus. While the role of phages as vehicles of toxin genes is well established, these observations suggest a much broader involvement of phages in bacterial virulence and the host response to bacterial infections.

Control of Directionality in L5 Integrase-mediated Site-specific Recombination

Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.

Corrected Sequence of the Bacteriophage P22 Genome

We report the first accurate genome sequence for bacteriophage P22, correcting a 0.14% error rate in previously determined sequences. DNA sequencing technology is now good enough that genomes of important model systems like P22 can be sequenced with essentially 100% accuracy with minimal investment of time and resources.

Bxz1, a New Generalized Transducing Phage for Mycobacteria

We have isolated and characterized a new generalized transducing phage, Bxz1, from soil sampling at a neighboring Wildlife Preservation Park. The hosts of the phage, measured by the formation of plaques, include fast growing Mycobacterium smegmatis and Mycobacterium vaccae. Bxz1 is capable of transducing chromosomal markers, point mutations, and plasmids at frequencies ranging from 10(-8) to 10(-6) per plaque forming unit between strains of M. smegmatis. We also demonstrated cotransduction of a transposon insertion linked to a point mutation of the ndh gene.

Complete Genomic Sequence of the Virulent Salmonella Bacteriophage SP6

We report the complete genome sequence of enterobacteriophage SP6, which infects Salmonella enterica serovar Typhimurium. The genome contains 43,769 bp, including a 174-bp direct terminal repeat. The gene content and organization clearly place SP6 in the coliphage T7 group of phages, but there is approximately 5 kb at the right end of the genome that is not present in other members of the group, and the homologues of T7 genes 1.3 through 3 appear to have undergone an unusual reorganization. Sequence analysis identified 10 putative promoters for the SP6-encoded RNA polymerase and seven putative rho-independent terminators. The terminator following the gene encoding the major capsid subunit has a termination efficiency of about 50% with the SP6-encoded RNA polymerase. Phylogenetic analysis of phages related to SP6 provided clear evidence for horizontal exchange of sequences in the ancestry of these phages and clearly demarcated exchange boundaries; one of the recombination joints lies within the coding region for a phage exonuclease. Bioinformatic analysis of the SP6 sequence strongly suggested that DNA replication occurs in large part through a bidirectional mechanism, possibly with circular intermediates.

The PKO2 Linear Plasmid Prophage of Klebsiella Oxytoca

Temperate bacteriophages with plasmid prophages are uncommon in nature, and of these only phages N15 and PY54 are known to have a linear plasmid prophage with closed hairpin telomeres. We report here the complete nucleotide sequence of the 51,601-bp Klebsiella oxytoca linear plasmid pKO2, and we demonstrate experimentally that it is also a prophage. We call this bacteriophage phiKO2. An analysis of the 64 predicted phiKO2 genes indicate that it is a fairly close relative of phage N15; they share a mosaic relationship that is typical of different members of double-stranded DNA tailed-phage groups. Although the head, tail shaft, and lysis genes are not recognizably homologous between these phages, other genes such as the plasmid partitioning, replicase, prophage repressor, and protelomerase genes (and their putative targets) are so similar that we predict that they must have nearly identical DNA binding specificities. The phiKO2 virion is unusual in that its phage lambda-like tails have an exceptionally long (3,433 amino acids) central tip tail fiber protein. The phiKO2 genome also carries putative homologues of bacterial dinI and umuD genes, both of which are involved in the host SOS response. We show that these divergently transcribed genes are regulated by LexA protein binding to a single target site that overlaps both promoters.

GroEL1: a Dedicated Chaperone Involved in Mycolic Acid Biosynthesis During Biofilm Formation in Mycobacteria

Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.

Synapsis in Phage Bxb1 Integration: Selection Mechanism for the Correct Pair of Recombination Sites

Recombination by site-specific recombinases is a highly concerted process that requires synapsis of the correct pair of DNA substrates. Phage-encoded serine-integrases are unusual among the serine-recombinase family, which includes transposon resolvases and DNA invertases, in that they utilize two simple but different DNA substrates (attB and attP) and do not require accessory sites, additional proteins, or DNA supercoiling. Synapsis must therefore be directed solely by integrase-DNA interactions. We show here that the Bxb1 serine-integrase binds as a dimer to its two DNA substrates (attB, attP) and recombinant products (attL, attR) with similar affinities. However, synapsis occurs only between attP and attB, and not between any of the other nine possible site combinations. The Bxb1 integrase domain structure, the unusual DNA-binding properties of the integrase, and the characterization of a mutant protein with altered site-discrimination, are consistent with synaptic selectivity being derived from DNA sequence-induced changes in the conformations of integrase-DNA complexes.

Integration and Excision by the Large Serine Recombinase PhiRv1 Integrase

The Mycobacterium tuberculosis prophage-like element phiRv1 encodes a site-specific recombination system utilizing an integrase of the serine recombinase family. Recombination occurs between a putative attP site and the host chromosome, but is unusual in that the attB site lies within a redundant repetitive element (REP13E12) of which there are seven copies in the M. tuberculosis genome; four of these elements contain attB sites suitable for phiRv1 integration in vivo. Although the mechanism of directional control of large serine integrases is poorly understood, a recombination directionality factor (RDF) has been identified that is required for phiRv1 integrase-mediated excisive recombination in vivo. Here we describe defined in vitro recombination reactions for both phiRv1 integrase-mediated integration and excision and show that the phiRv1 RDF is not only required for excision but inhibits integrative recombination; neither reaction requires DNA supercoiling, host factors, or high-energy cofactors. Integration, excision and excise-mediated inhibition of integration require simple substrates sites, indicating that the control of directionality does not involve the manipulation of higher-order protein-DNA architectures as described for the tyrosine integrases.

2004 ASM Conference on the New Phage Biology: the 'Phage Summit'

In August, more than 350 conferees from 24 countries attended the ASM Conference on the New Phage Biology, in Key Biscayne, Florida. This meeting, also called the Phage Summit, was the first major international gathering in decades devoted exclusively to phage biology. What emerged from the 5 days of the Summit was a clear perspective on the explosive resurgence of interest in all aspects of bacteriophage biology. The classic phage systems like lambda and T4, reinvigorated by structural biology, bioinformatics and new molecular and cell biology tools, remain model systems of unequalled power and facility for studying fundamental biological issues. In addition, the New Phage Biology is also populated by basic and applied scientists focused on ecology, evolution, nanotechnology, bacterial pathogenesis and phage-based immunologics, therapeutics and diagnostics, resulting in a heightened interest in bacteriophages per se, rather than as a model system. Besides constituting another landmark in the long history of a field begun by d'Herelle and Twort during the early 20th century, the Summit provided a unique venue for establishment of new interactive networks for collaborative efforts between scientists of many different backgrounds, interests and expertise.

The Generalized Transducing Salmonella Bacteriophage ES18: Complete Genome Sequence and DNA Packaging Strategy

The generalized transducing double-stranded DNA bacteriophage ES18 has an icosahedral head and a long noncontractile tail, and it infects both rough and smooth Salmonella enterica strains. We report here the complete 46,900-bp genome nucleotide sequence and provide an analysis of the sequence. Its 79 genes and their organization clearly show that ES18 is a member of the lambda-like (lambdoid) phage group; however, it contains a novel set of genes that program assembly of the virion head. Most of its integration-excision, immunity, Nin region, and lysis genes are nearly identical to those of the short-tailed Salmonella phage P22, while other early genes are nearly identical to Escherichia coli phages lambda and HK97, S. enterica phage ST64T, or a Shigella flexneri prophage. Some of the ES18 late genes are novel, while others are most closely related to phages HK97, lambda, or N15. Thus, the ES18 genome is mosaically related to other lambdoid phages, as is typical for all group members. Analysis of virion DNA showed that it is circularly permuted and about 10% terminally redundant and that initiation of DNA packaging series occurs across an approximately 1-kbp region rather than at a precise location on the genome. This supports a model in which ES18 terminase can move substantial distances along the DNA between recognition and cleavage of DNA destined to be packaged. Bioinformatic analysis of large terminase subunits shows that the different functional classes of phage-encoded terminases can usually be predicted from their amino acid sequence.

Inquiry Learning. Teaching Scientific Inquiry

A Peptidoglycan Hydrolase Motif Within the Mycobacteriophage TM4 Tape Measure Protein Promotes Efficient Infection of Stationary Phase Cells

The predominant morphotype of mycobacteriophage virions has a DNA-containing capsid attached to a long flexible non-contractile tail, features characteristic of the Siphoviridae. Within these phage genomes the tape measure protein (tmp) gene can be readily identified due to the well-established relationship between the length of the gene and the length of the phage tail--because these phages typically have long tails, the tmp gene is usually the largest gene in the genome. Many of these mycobacteriophage Tmp's contain small motifs with sequence similarity to host proteins. One of these motifs (motif 1) corresponds to the Rpf proteins that have lysozyme activity and function to stimulate growth of dormant bacteria, while the others (motifs 2 and 3) are related to proteins of unknown function, although some of the related proteins of the host are predicted to be involved in cell wall catabolism. We show here that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for phage viability, it facilitates efficient infection and DNA injection into stationary phase cells. Tmp's of mycobacteriophages may thus have acquired these motifs in order to avoid a selective disadvantage that results from changes in peptidoglycan in non-growing cells.

Mycobacteriophage Exploit NHEJ to Facilitate Genome Circularization

Ku-dependent nonhomologous end joining (NHEJ) is a double-strand break repair process conserved in all branches of cellular life but has not previously been implicated in the DNA metabolic processes of viruses. We identified Ku homologs in Corndog and Omega, two related mycobacteriophages of Mycobacterium smegmatis. These proteins formed homodimers and bound DNA ends in a manner identical to other Ku's and stimulated joining of ends by the host NHEJ DNA ligase (LigD). Omega and Corndog are unusual in having short 4 base cos ends that would not be expected to self-anneal and would therefore require NHEJ during phage genome circularization. Consistently, M. smegmatis LigD null strains are entirely and selectively unable to support infection by Corndog or Omega, with concomitant failure of genome circularization. These results establish a new paradigm for sequestration of the host cell NHEJ process by bacteriophage and provide a framework for understanding similar transactions in eukaryotic viral infections.

Efficient Site-specific Integration in Plasmodium Falciparum Chromosomes Mediated by Mycobacteriophage Bxb1 Integrase

Here we report an efficient, site-specific system of genetic integration into Plasmodium falciparum malaria parasite chromosomes. This is mediated by mycobacteriophage Bxb1 integrase, which catalyzes recombination between an incoming attP and a chromosomal attB site. We developed P. falciparum lines with the attB site integrated into the glutaredoxin-like cg6 gene. Transfection of these attB(+) lines with a dual-plasmid system, expressing a transgene on an attP-containing plasmid together with a drug resistance gene and the integrase on a separate plasmid, produced recombinant parasites within 2 to 4 weeks that were genetically uniform for single-copy plasmid integration. Integrase-mediated recombination resulted in proper targeting of parasite proteins to intra-erythrocytic compartments, including the apicoplast, a plastid-like organelle. Recombinant attB x attP parasites were genetically stable in the absence of drug and were phenotypically homogeneous. This system can be exploited for rapid genetic integration and complementation analyses at any stage of the P. falciparum life cycle, and it illustrates the utility of Bxb1-based integrative recombination for genetic studies of intracellular eukaryotic organisms.

Exploring the Mycobacteriophage Metaproteome: Phage Genomics As an Educational Platform

Bacteriophages are the most abundant forms of life in the biosphere and carry genomes characterized by high genetic diversity and mosaic architectures. The complete sequences of 30 mycobacteriophage genomes show them collectively to encode 101 tRNAs, three tmRNAs, and 3,357 proteins belonging to 1,536 "phamilies" of related sequences, and a statistical analysis predicts that these represent approximately 50% of the total number of phamilies in the mycobacteriophage population. These phamilies contain 2.19 proteins on average; more than half (774) of them contain just a single protein sequence. Only six phamilies have representatives in more than half of the 30 genomes, and only three-encoding tape-measure proteins, lysins, and minor tail proteins-are present in all 30 phages, although these phamilies are themselves highly modular, such that no single amino acid sequence element is present in all 30 mycobacteriophage genomes. Of the 1,536 phamilies, only 230 (15%) have amino acid sequence similarity to previously reported proteins, reflecting the enormous genetic diversity of the entire phage population. The abundance and diversity of phages, the simplicity of phage isolation, and the relatively small size of phage genomes support bacteriophage isolation and comparative genomic analysis as a highly suitable platform for discovery-based education.

Control of Phage Bxb1 Excision by a Novel Recombination Directionality Factor

Mycobacteriophage Bxb1 integrates its DNA at the attB site of the Mycobacterium smegmatis genome using the viral attP site and a phage-encoded integrase generating the recombinant junctions attL and attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchange without the necessity for complex higher order macromolecular architectures. To elucidate the regulatory mechanism for the integration and excision reactions, we have identified a Bxb1-encoded recombination directionality factor (RDF), the product of gene 47. Bxb1 gp47 is an unusual RDF in that it is relatively large (approximately 28 kDa), unrelated to all other RDFs, and presumably performs dual functions since it is well conserved in mycobacteriophages that utilize unrelated integration systems. Furthermore, unlike other RDFs, Bxb1 gp47 does not bind DNA and functions solely through direct interaction with integrase-DNA complexes. The nature and consequences of this interaction depend on the specific DNA substrate to which integrase is bound, generating electrophoretically stable tertiary complexes with either attB or attP that are unable to undergo integrative recombination, and weakly bound, electrophoretically unstable complexes with either attL or attR that gain full potential for excisive recombination.

The Role of Iron in Mycobacterium Smegmatis Biofilm Formation: the Exochelin Siderophore is Essential in Limiting Iron Conditions for Biofilm Formation but Not for Planktonic Growth

Many species of mycobacteria form structured biofilm communities at liquid-air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 microM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes - especially those involved in siderophore synthesis and iron uptake - are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 microM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron-exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 microM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.

Comparative Genomic Analysis of Mycobacteriophage Tweety: Evolutionary Insights and Construction of Compatible Site-specific Integration Vectors for Mycobacteria

Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP-int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNA(Lys) gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions.

Genomic and Structural Analysis of Syn9, a Cyanophage Infecting Marine Prochlorococcus and Synechococcus

Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus. Its 177,300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 - which shares 19% of Syn9's genes - Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences within marine cyanobacteria.

Genome Sequence, Structural Proteins, and Capsid Organization of the Cyanophage Syn5: a "horned" Bacteriophage of Marine Synechococcus

Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single "horn", a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 A resolution icosahedral reconstruction of the capsid revealed a T=7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria.

Recombineering in Mycobacterium Tuberculosis

Genetic dissection of M. tuberculosis is complicated by its slow growth and its high rate of illegitimate recombination relative to homologous DNA exchange. We report here the development of a facile allelic exchange system by identification and expression of mycobacteriophage-encoded recombination proteins, adapting a strategy developed previously for recombineering in Escherichia coli. Identifiable recombination proteins are rare in mycobacteriophages, and only 1 of 30 genomically characterized mycobacteriophages (Che9c) encodes homologs of both RecE and RecT. Expression and biochemical characterization show that Che9c gp60 and gp61 encode exonuclease and DNA-binding activities, respectively, and expression of these proteins substantially elevates recombination facilitating allelic exchange in both M. smegmatis and M. tuberculosis. Mycobacterial recombineering thus provides a simple approach for the construction of gene replacement mutants in both slow- and fast-growing mycobacteria.

BRED: a Simple and Powerful Tool for Constructing Mutant and Recombinant Bacteriophage Genomes

Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED), in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

Recombineering Mycobacteria and Their Phages

Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.

Bacteriophage Genomics

The past three years have seen an escalation in the number of sequenced bacteriophage genomes with more than 500 now in the NCBI phage database, representing a more than threefold increase since 2005. These span at least 70 different bacterial hosts, with two-thirds of the sequenced genomes of phages representing only eight bacterial hosts. Three key features emerge from the comparative analysis of these genomes. First, they span a very high degree of genetic diversity, suggesting early evolutionary origins. Second, the genome architectures are mosaic, reflecting an unusually high degree of horizontal genetic exchange in their evolution. Third, phage genomes contain a very high proportion of novel genetic sequences of unknown function, and probably represent the largest reservoir of unexplored genes. With an estimated 10(31) bacterial and archael viruses in the biosphere, our view of the virosphere will draw into sharper focus as further bacteriophage genomes are characterized.

Comparative Genomics of the Mycobacteriophages: Insights into Bacteriophage Evolution

The recognition of the vast numbers of bacteriophages in the biosphere has prompted a renewal of interest in understanding their morphological and genetic diversity, and elucidating the evolutionary mechanisms that give rise to them. We have approached these questions by isolating and characterizing a collection of mycobacteriophages that infect a common bacterial host, Mycobacterium smegmatis. Comparative genomic analysis of 50 mycobacteriophages shows that they are highly diverse, although not uniformly so, that they are pervasively mosaic with a multitude of single gene modules, and that this mosaicism is generated through illegitimate recombination.

Exploring the Prokaryotic Virosphere

The world of prokaryotic viruses, including the "traditional" bacteriophages and the viruses of Archaea, is currently in a period of renaissance, brought about largely by our new capabilities in (meta)genomics and by the isolation of diverse novel virus-host systems. In this review, we highlight some of the directions where we believe research on the prokaryotic virosphere will lead us in the near future.

Growth of Mycobacterium Tuberculosis Biofilms Containing Free Mycolic Acids and Harbouring Drug-tolerant Bacteria

Successful treatment of human tuberculosis requires 6-9 months' therapy with multiple antibiotics. Incomplete clearance of tubercle bacilli frequently results in disease relapse, presumably as a result of reactivation of persistent drug-tolerant Mycobacterium tuberculosis cells, although the nature and location of these persisters are not known. In other pathogens, antibiotic tolerance is often associated with the formation of biofilms--organized communities of surface-attached cells--but physiologically and genetically defined M. tuberculosis biofilms have not been described. Here, we show that M. tuberculosis forms biofilms with specific environmental and genetic requirements distinct from those for planktonic growth, which contain an extracellular matrix rich in free mycolic acids, and harbour an important drug-tolerant population that persist despite exposure to high levels of antibiotics.

Mycobacterial Recombineering

Although substantial advances have been made in mycobacterial genetics over the past 15 yr, manipulation of mycobacterial genomes and Mycobacterium tuberculosis in particular, continues to be hindered by problems of relatively poor DNA uptake, slow growth rate, and high levels of illegitimate recombination. In Escherichia coli an effective approach to stimulating recombination frequencies has been developed called "recombineering," in which phage-encoded recombination functions are transiently expressed to promote efficient homologous recombination. Although homologs of these recombination proteins are rare among mycobacteriophages, we have identified one phage, Che9c, encoding relatives of both RecE and RecT of the E. coli rac prophage. Expression of the Che9c proteins from an inducible expression system in either slow- or fast-growing mycobacteria provides elevated recombination frequencies and facilitates simple allelic exchange using linear DNA substrates. Mycobacterial recombineering, therefore, offers a simple approach for constructing gene replacement mutants in M. smegmatis and M. tuberculosis.

Two-step Site Selection for Serine-integrase-mediated Excision: DNA-directed Integrase Conformation and Central Dinucleotide Proofreading

Bacteriophage-encoded serine-integrases are members of the large family of serine-recombinases and catalyze site-specific integrative recombination between a phage attP site and a bacterial attB site to form an integrated prophage. Prophage excision involves a second site-specific recombination event, in which the sites generated by integration, attL and attR, are used as substrates to regenerate attP and attB. Excision is catalyzed by integrase but also requires a phage-encoded recombination directionality factor (RDF). The Bxb1 recombination sites, attP and attB, are small (<50 bp), different in sequence, and quasisymmetrical, and they give rise to attL- and attR-recombinant products that are asymmetric but similar to each other, each being composed of B- and P-type half-sites. We show here that the determination of correct excision products is a two-step process, with a presynaptic RDF-dependent step that aligns attL and attR in the correct orientation and a postsynaptic step in which the nonpalindromic central dinucleotide confers identity to attL and attR and prevents each from recombining with itself.

Efficient Point Mutagenesis in Mycobacteria Using Single-stranded DNA Recombineering: Characterization of Antimycobacterial Drug Targets

Construction of genetically isogenic strains of mycobacteria is complicated by poor recombination rates and the lack of generalized transducing phages for Mycobacterium tuberculosis. We report here a powerful method for introducing single point mutations into mycobacterial genomes using oligonucleotide-derived single-stranded DNA recombineering and mycobacteriophage-encoded proteins. Phage Che9c gp61-mediated recombination is sufficiently efficient that single base changes can be introduced without requirement for direct selection, with isogenic mutant strains identified simply by PCR. Efficient recombination requires only short (50 nucleotide) oligonucleotides, but there is an unusually strong strand bias and an oligonucleotide targeting lagging strand DNA synthesis can recombine more than 10,000-fold efficiently than its complementary oligonucleotide. This ssDNA recombineering provides a simple assay for comparing the activities of related phage recombinases, and we find that both Escherichia coli RecET and phage lambda Red recombination proteins function inefficiently in mycobacteria, illustrating the utility of developing recombineering in new bacterial systems using host-specific bacteriophage recombinases. ssDNA mycobacterial recombineering provides a simple approach to characterizing antimycobacterial drug targets, and we have constructed and characterized single point mutations that confer resistance to isoniazid, rifampicin, ofloxacin and streptomycin.

Genomic Characterization of Mycobacteriophage Giles: Evidence for Phage Acquisition of Host DNA by Illegitimate Recombination

A characteristic feature of bacteriophage genomes is that they are architecturally mosaic, with each individual genome representing a unique assemblage of individual exchangeable modules. Plausible mechanisms for generating mosaicism include homologous recombination at shared boundary sequences of module junctions, illegitimate recombination in a non-sequence-directed process, and site-specific recombination. Analysis of the novel mycobacteriophage Giles genome not only extends our current perspective on bacteriophage genetic diversity, with more than 60% of the genes unrelated to other mycobacteriophages, but offers novel insights into how mosaic genomes are created. In one example, the integration/excision cassette is atypically situated within the structural gene operon and could have moved there either by illegitimate recombination or more plausibly via integrase-mediated site-specific recombination. In a second example, a DNA segment has been recently acquired from the host bacterial chromosome by illegitimate recombination, providing further evidence that phage genomic mosaicism is generated by nontargeted recombination processes.

Mycobacteriophages BPs, Angel and Halo: Comparative Genomics Reveals a Novel Class of Ultra-small Mobile Genetic Elements

Mycobacteriophages BPs, Angel and Halo are closely related viruses isolated from Mycobacterium smegmatis, and possess the smallest known mycobacteriophage genomes, 41,901 bp, 42,289 bp and 41,441 bp, respectively. Comparative genome analysis reveals a novel class of ultra-small mobile genetic elements; BPs and Halo each contain an insertion of the proposed mobile elements MPME1 and MPME2, respectively, at different locations, while Angel contains neither. The close similarity of the genomes provides a comparison of the pre- and post-integration sequences, revealing an unusual 6 bp insertion at one end of the element and no target duplication. Nine additional copies of these mobile elements are identified in a variety of different contexts in other mycobacteriophage genomes. In addition, BPs, Angel and Halo have an unusual lysogeny module in which the repressor and integrase genes are closely linked. The attP site is located within the repressor-coding region, such that prophage formation results in expression of a C-terminally truncated, but active, form of the repressor.

Mycobacteriophage Lysin B is a Novel Mycolylarabinogalactan Esterase

Mycobacteriophages encounter a unique problem among phages of Gram-positive bacteria, in that lysis must not only degrade the peptidoglycan layer but also circumvent a mycolic acid-rich outer membrane covalently attached to the arabinogalactan-peptidoglycan complex. Mycobacteriophages accomplish this by producing two lysis enzymes, Lysin A (LysA) that hydrolyses peptidoglycan, and Lysin B (LysB), a novel mycolylarabinogalactan esterase, that cleaves the mycolylarabinogalactan bond to release free mycolic acids. The D29 LysB structure shows an alpha/beta hydrolase organization with a catalytic triad common to cutinases, but which contains an additional four-helix domain implicated in the binding of lipid substrates. Whereas LysA is essential for mycobacterial lysis, a Giles DeltalysB mutant mycobacteriophage is viable, but defective in the normal timing, progression and completion of host cell lysis. We propose that LysB facilitates lysis by compromising the integrity of the mycobacterial outer membrane linkage to the arabinogalactan-peptidoglycan layer.

Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium Tuberculosis

Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively-drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections.

The Genome of Bacillus Subtilis Bacteriophage SPO1

We report the genome sequence of Bacillus subtilis phage SPO1. The unique genome sequence is 132,562 bp long, and DNA packaged in the virion (the chromosome) has a 13,185-bp terminal redundancy, giving a total of 145,747 bp. We predict 204 protein-coding genes and 5 tRNA genes, and we correlate these findings with the extensive body of investigations of SPO1, including studies of the functions of the 61 previously defined genes and studies of the virion structure. Sixty-nine percent of the encoded proteins show no similarity to any previously known protein. We identify 107 probable transcription promoters; most are members of the promoter classes identified in earlier studies, but we also see a new class that has the same sequence as the host sigma K promoters. We find three genes encoding potential new transcription factors, one of which is a distant homologue of the host sigma factor K. We also identify 75 probable transcription terminator structures. Promoters and terminators are generally located between genes and together with earlier data give what appears to be a rather complete picture of how phage transcription is regulated. There are complete genome sequences available for five additional phages of Gram-positive hosts that are similar to SPO1 in genome size and in composition and organization of genes. Comparative analysis of SPO1 in the context of these other phages yields insights about SPO1 and the other phages that would not be apparent from the analysis of any one phage alone. These include assigning identities as well as probable functions for several specific genes and inferring evolutionary events in the phages' histories. The comparative analysis also allows us to put SPO1 into a phylogenetic context. We see a pattern similar to what has been noted in phage T4 and its relatives, in which there is minimal successful horizontal exchange of genes among a "core" set of genes that includes most of the virion structural genes and some genes of DNA metabolism, but there is extensive horizontal transfer of genes over the remainder of the genome. There is a correlation between genes in rapid evolutionary flux through these genomes and genes that are small.

Mycobacteriophages: Genes and Genomes

Viruses are powerful tools for investigating and manipulating their hosts, but the enormous size and amazing genetic diversity of the bacteriophage population have emerged as something of a surprise. In light of the evident importance of mycobacteria to human health--especially Mycobacterium tuberculosis, which causes tuberculosis--and the difficulties that have plagued their genetic manipulation, mycobacteriophages are especially appealing subjects for discovery, genomic characterization, and manipulation. With more than 70 complete genome sequences available, the mycobacteriophages have provided a wealth of information on the diversity of phages that infect a common bacterial host, revealed the pervasively mosaic nature of phage genome architectures, and identified a huge number of genes of unknown function. Mycobacteriophages have provided key tools for tuberculosis genetics, and new methods for simple construction of mycobacteriophage recombinants will facilitate postgenomic explorations into mycobacteriophage biology.

Temperature-dependent Regulation of Mycolic Acid Cyclopropanation in Saprophytic Mycobacteria: Role of the Mycobacterium Smegmatis 1351 Gene (MSMEG_1351) in CIS-cyclopropanation of Alpha-mycolates

The cell envelope is a crucial determinant of virulence and drug resistance in Mycobacterium tuberculosis. Several features of pathogenesis and immunomodulation of host responses are attributable to the structural diversity in cell wall lipids, particularly in the mycolic acids. Structural modification of the alpha-mycolic acid by introduction of cyclopropane rings as catalyzed by the methyltransferase, PcaA, is essential for a lethal, persistent infection and the cording phenotype in M. tuberculosis. Here, we demonstrate the presence of cyclopropanated cell wall mycolates in the nonpathogenic strain Mycobacterium smegmatis and identify MSMEG_1351 as a gene encoding a PcaA homologue. Interestingly, alpha-mycolic acid cyclopropanation was inducible in cultures grown at 25 degrees C. The growth temperature modulation of the cyclopropanating activity was determined by high resolution magic angle spinning NMR analyses on whole cells. In parallel, quantitative reverse transcription-PCR analysis showed that MSMEG_1351 gene expression is up-regulated at 25 degrees C compared with 37 degrees C. An MSMEG_1351 knock-out strain of M. smegmatis, generated by recombineering, exhibited a deficiency in cyclopropanation of alpha-mycolates. The functional equivalence of PcaA and MSMEG_1351 was established by cross-complementation in the MSMEG_1351 knock-out mutant and also in a DeltapcaA strain of Mycobacterium bovis BCG. Overexpression of MSMEG_1351 restored the wild-type mycolic acid profile and the cording phenotype in BCG. Although the biological significance of mycolic acid cyclopropanation in nonpathogenic mycobacteria remains unclear, it likely represents a mechanism of adaptation of cell wall structure and composition to cope with environmental factors.

Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids During Mycobacterial Growth in Biofilms

Mycobacterial species, like other microbes, spontaneously form multicellular drug-tolerant biofilms when grown in vitro in detergent-free liquid media. The structure of Mycobacterium tuberculosis biofilms is formed through genetically programmed pathways and is built upon a large abundance of novel extracellular free mycolic acids (FM), although the mechanism of FM synthesis remained unclear. Here we show that the FM in Mycobacterium smegmatis biofilms is produced through the enzymatic release from constitutively present mycolyl derivatives. One of the precursors for FM is newly synthesized trehalose dimycolate (TDM), which is cleaved by a novel TDM-specific serine esterase, Msmeg_1529. Disruption of Msmeg_1529 leads to undetectable hydrolytic activity, reduced levels of FM in the mutant, and retarded biofilm growth. Furthermore, enzymatic hydrolysis of TDM remains conserved in M. tuberculosis, suggesting the presence of a TDM-specific esterase in this pathogen. Overall, this study provides the first evidence for an enzymatic release of free mycolic acids from cell envelope mycolates during mycobacterial growth.

Do Mycobacteria Produce Endospores?

The genus Mycobacterium, which is a member of the high G+C group of Gram-positive bacteria, includes important pathogens, such as M. tuberculosis and M. leprae. A recent publication in PNAS reported that M. marinum and M. bovis bacillus Calmette-Guérin produce a type of spore known as an endospore, which had been observed only in the low G+C group of Gram-positive bacteria. Evidence was presented that the spores were similar to endospores in ultrastructure, in heat resistance and in the presence of dipicolinic acid. Here, we report that the genomes of Mycobacterium species and those of other high G+C Gram-positive bacteria lack orthologs of many, if not all, highly conserved genes diagnostic of endospore formation in the genomes of low G+C Gram-positive bacteria. We also failed to detect the presence of endospores by light microscopy or by testing for heat-resistant colony-forming units in aged cultures of M. marinum. Finally, we failed to recover heat-resistant colony-forming units from frogs chronically infected with M. marinum. We conclude that it is unlikely that Mycobacterium is capable of endospore formation.

Comparative Genomic Analysis of 60 Mycobacteriophage Genomes: Genome Clustering, Gene Acquisition, and Gene Size

Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.

Competencies: a Cure for Pre-med Curriculum

Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4

Five newly isolated mycobacteriophages--Angelica, CrimD, Adephagia, Anaya, and Pixie--have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them--with the exception of TM4--form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species.

Bacteriophages and Their Genomes

Bacteriophages occupy a unique position in biology, representing an absolute majority of all organisms in the biosphere. Because their genomes are relatively small, elucidating the genetic diversity of the phage population, deciphering their origins, and identifying the evolutionary mechanisms that shape the population would seem readily feasible. And yet the pace of phage genome characterization has slowed over the past three years, reflecting in part a need to transition from sequencing known and well-characterized bacteriophages to the isolation and comparative analysis of new isolates. The current state of bacteriophage genomics shows that the genetic diversity of the population is very high, that phages have been actively evolving for billions of years with active engagement of horizontal genetic exchange, and that their genomes are consequently pervasively mosaic in their architectures. But we have barely scratched the surface and the next years of phage genome exploration promise to be especially revealing.

Reporter Phage and Breath Tests: Emerging Phenotypic Assays for Diagnosing Active Tuberculosis, Antibiotic Resistance, and Treatment Efficacy

The rapid and accurate diagnosis of active tuberculosis (TB) and its drug susceptibility remain a challenge. Phenotypic assays allow determination of antibiotic susceptibilities even if sequence data are not available or informative. We review 2 emerging diagnostic approaches, reporter phage and breath tests, both of which assay mycobacterial metabolism. The reporter phage signal, Green fluorescent protein (GFP) or β-galactosidase, indicates transcription and translation inside the recipient bacilli and its attenuation by antibiotics. Different breath tests assay, (1) exhaled antigen 85, (2) mycobacterial urease activity, and (3) detection by trained rats of disease-specific odor in sputum, have also been developed. When compared with culture, reporter phage assays shorten the time for initial diagnosis of drug susceptibility by several days. Both reporter phage and breath tests have promise as early markers to determine the efficacy of treatment. While sputum often remains smear and Mycobacterium tuberculosis DNA positive early in the course of efficacious antituberculous treatment, we predict that both breath and phage tests will rapidly become negative. If this hypothesis proves correct, phage assays and breath tests could become important surrogate markers in early bactericidal activity (EBA) studies of new antibiotics.

Phamerator: a Bioinformatic Tool for Comparative Bacteriophage Genomics

Bacteriophage genomes have mosaic architectures and are replete with small open reading frames of unknown function, presenting challenges in their annotation, comparative analysis, and representation.

Evaluation of a Transposase Protocol for Rapid Generation of Shotgun High-throughput Sequencing Libraries from Nanogram Quantities of DNA

Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.

Successive and Targeted DNA Integrations in the Drosophila Genome by Bxb1 and PhiC31 Integrases

At present Ï•C31 is the only phage integrase system available for directionally regulated site-specific DNA integration in the Drosophila genome. Here we report that mycobacteriophage Bxb1 integrase also mediates targeted DNA integration in Drosophila with high specificity and efficiency. By alternately using Bxb1 and Ï•C31, we were able to carry out multiple rounds of successive and targeted DNA integrations in our genomic engineering founder lines for the purpose of generating complex knock-in alleles.

Single-molecule Analysis Reveals the Molecular Bearing Mechanism of DNA Strand Exchange by a Serine Recombinase

Structural and topological data suggest that serine site-specific DNA recombinases exchange duplex DNAs by rigid-body relative rotation of the two halves of the synapse, mediated by a flat protein-protein interaction surface. We present evidence for this rotational motion for a simple serine recombinase, the Bxb1 phage integrase, from a single-DNA-based supercoil-release assay that allows us to follow crossover site cleavage, rotation, religation, and product release in real time. We have also used a two-DNA braiding-relaxation experiment to observe the effect of synapse rotation in reactions on two long molecules. Relaxation and unbraiding are rapid (averaging 54 and 70 turns/s, respectively) and complete, with no discernible pauses. Nevertheless, the molecular friction associated with rotation is larger than that of type-I topoisomerases in a similar assay. Surprisingly we find that the synapse can stay rotationally "open" for many minutes.

Evaluation of Fluoromycobacteriophages for Detecting Drug Resistance in Mycobacterium Tuberculosis

We tested a new method for detecting drug-resistant strains of Mycobacterium tuberculosis that uses a TM4 mycobacteriophage phAE87::hsp60-EGFP (EGFP-phage) engineered to contain the gene encoding enhanced green fluorescent protein (EGFP). After promising results in preliminary studies, the EGFP-phage was used to detect isoniazid (INH), rifampin (RIF), and streptomycin (STR) resistance in 155 strains of M. tuberculosis, and the results were compared to the resazurin microplate technique, with the proportion method serving as the reference standard. The resazurin technique yielded sensitivities of 94% for INH and RIF and 98% for STR and specificities of 97% for INH, 95% for RIF, and 98% for STR. The sensitivity of EGFP-phage was 94% for all three antibiotics, with specificities of 90% for INH, 93% for RIF, and 95% for STR. The EGFP-phage results were available in 2 days for RIF and STR and in 3 days for INH, with an estimated cost of ∼2$ to test the three antibiotics. Using a more stringent criterion for resistance improved the specificity of the EGFP-phage for INH and RIF without affecting the sensitivity. In preliminary studies, the EGFP-phage could also effectively detect resistance to the fluoroquinolones. The EGFP-phage method has the potential to be a valuable rapid and economic screen for detecting drug-resistant tuberculosis if the procedure can be simplified, if it can be adapted to clinical material, and if its sensitivity can be improved.

Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.

Complete Genome Sequences of 138 Mycobacteriophages

Bacteriophages are the most numerous biological entities in the biosphere, and although their genetic diversity is high, it remains ill defined. Mycobacteriophages-the viruses of mycobacterial hosts-provide insights into this diversity as well as tools for manipulating Mycobacterium tuberculosis. We report here the complete genome sequences of 138 new mycobacteriophages, which-together with the 83 mycobacteriophages previously reported-represent the largest collection of phages known to infect a single common host, Mycobacterium smegmatis mc(2) 155.

2GFP10: A High-intensity Fluorophage Enables Detection and Rapid Drug Susceptibility Testing of Mycobacterium Tuberculosis Directly from Sputum Samples

The diagnosis of active tuberculosis (TB) and rapid drug susceptibility testing (DST) at point of care remain critical obstacles to TB control. This report describes a high-intensity mycobacterial-specific-fluorophage (Ï•(2)GFP10) that for the first time allows direct visualization of Mycobacterium tuberculosis (Mtb) in clinical sputum samples. Engineered features distinguishing Ï•(2)GFP10 from previous reporter phages include an improved vector backbone with increased cloning capacity and superior expression of fluorescent reporter genes through use of an efficient phage promoter. Ï•(2)GFP10 produces a 100-fold increase in fluorescence-per-cell compared to existing reporter-phages. DST for isoniazid and oxofloxacin, carried out in cultured samples, was complete within 36 h. Ï•(2)GFP10 detected M. tuberculosis in clinical sputum samples collected from TB patients. DST for rifampicin and kanamycin from sputum samples yielded results after 12h of incubation with Ï•(2)GFP10. Fluorophage Ï•(2)GFP10 has potential for clinical development as a rapid, sensitive, and inexpensive point-of-care diagnostic tool for M. tuberculosis infection, and as a rapid DST.

The Bxb1 Gp47 Recombination Directionality Factor is Required Not Only for Prophage Excision, but Also for Phage DNA Replication

Mycobacteriophage Bxb1 encodes a serine-integrase that catalyzes both integrative and excisive site-specific recombination. However, excision requires a second phage-encoded protein, gp47, which serves as a recombination directionality factor (RDF). The viability of a Bxb1 mutant containing an S153A substitution in gp47 that eliminates the RDF activity of Bxb1 gp47 shows that excision is not required for Bxb1 lytic growth. However, the inability to construct a Δ47 deletion mutant of Bxb1 suggests that gp47 provides a second function that is required for lytic growth, although the possibility of an essential cis-acting site cannot be excluded. Characterization of a mutant prophage of mycobacteriophage L5 in which gene 54 - a homologue of Bxb1 gene 47 - is deleted shows that it also is defective in induced lytic growth, and exhibits a strong defect in DNA replication. Bxb1 gp47 and its relatives are also unusual in containing conserved motifs associated with a phosphoesterase function, although we have not been able to show robust phosphoesterase activity of the proteins, and amino acid substitutions with the conserved motifs do not interfere with RDF activity. We therefore propose that Bxb1 gp47 and its relatives provide an important function in phage DNA replication that has been co-opted by the integration machinery of the serine-integrases to control the directionality of recombination.

Waiting
simple hit counter