In JoVE (1)

Other Publications (7)

Articles by Jane H. Park in JoVE

 JoVE Medicine

Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease

1Institute of Imaging Science, Vanderbilt University, 2Department of Radiology and Radiological Sciences, Vanderbilt University, 3Department of Biomedical Engineering, Vanderbilt University, 4Department of Molecular Physiology and Biophysics, Vanderbilt University, 5Department of Physical Medicine and Rehabilitation, Vanderbilt University, 6Department of Physics and Astronomy, Vanderbilt University

JoVE 52352

Other articles by Jane H. Park on PubMed

Magnesium Abnormalities of Skeletal Muscle in Dermatomyositis and Juvenile Dermatomyositis

Arthritis and Rheumatism. Feb, 2002  |  Pubmed ID: 11840451

To characterize abnormalities in magnesium levels in the muscles of patients with dermatomyositis (DM) and juvenile dermatomyositis (JDM) and to evaluate the beneficial effects of prednisone and immunosuppressive therapy in elevating free magnesium (Mg(2+)) and ATP-bound magnesium (Mg-ATP).

Imaging and Skeletal Muscle Disease

Current Rheumatology Reports. Apr, 2005  |  Pubmed ID: 15760589

Imaging techniques have assumed increasing importance in the diagnostic approach to patients with muscle disease. These techniques include computed tomography, ultrasound, and magnetic resonance imaging (MRI). For most disorders of muscle, ultrasound and MRI are more useful than computed tomography. Advantages of ultrasound include accessibility at the bedside and lower cost. However, MRI remains the gold standard for detecting changes in muscle tissue. In some cases, MRI examinations can take the place of muscle biopsy for diagnosis. New advances in MRI include diffusion-weighted imaging, which permits assessment of fluid motion in muscles, and blood-oxygen-level-dependent imaging to evaluate tissue oxygenation.

Diffusion-weighted Imaging of Inflammatory Myopathies: Polymyositis and Dermatomyositis

Journal of Magnetic Resonance Imaging : JMRI. Jan, 2008  |  Pubmed ID: 18022843

Muscles of myositis patients examined with MRI demonstrate heterogeneous pathology ranging from unaffected muscle groups to severe inflammation, fat infiltration, and eventually, more serious fat replacement. The purpose of this investigation was to characterize myositic thigh muscles using diffusion-weighted imaging (DWI) and to examine fluid motion at various disease stages. We chose to characterize total fluid motion within the muscle using the model proposed by Le Bihan et al (6,7) in which the apparent diffusion coefficient (ADC), diffusion in the extra- and intracellular muscle compartments (D), perfusion in capillaries (pseudodiffusion) (D*), and volume fraction of capillary perfusion (f) are determined. Unaffected patient muscles have DWI coefficients equivalent to those of normal muscles. Inflamed muscles show elevated ADC and D values compared to normal muscles (P < 0.0005), and fat-infiltrated muscles have lower values than control muscles (P < 0.001). Inflamed muscles have lower f values than unaffected muscles (P < 0.009), suggesting decreased fractional volume of capillary perfusion. DWI provides quantitative data on molecular fluid motion in diseased muscles and affords the potential for longitudinal monitoring of myositic patients.

Quantitative Effects of Inclusion of Fat on Muscle Diffusion Tensor MRI Measurements

Journal of Magnetic Resonance Imaging : JMRI. Nov, 2013  |  Pubmed ID: 23418124

To determine the minimum water percentage in a muscle region of interest that would allow diffusion tensor (DT-) MRI data to reflect the diffusion properties of pure muscle accurately.

Multi-parametric MRI Characterization of Inflammation in Murine Skeletal Muscle

NMR in Biomedicine. Jun, 2014  |  Pubmed ID: 24777935

Myopathies often display a common set of complex pathologies that include muscle weakness, inflammation, compromised membrane integrity, fat deposition, and fibrosis. Multi-parametric, quantitative, non-invasive imaging approaches may be able to resolve these individual pathological components. The goal of this study was to use multi-parametric MRI to investigate inflammation as an isolated pathological feature. Proton relaxation, diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT-MRI), and dynamic contrast enhanced (DCE-MRI) parameters were calculated from data acquired in a single imaging session conducted 6-8 hours following the injection of λ-carrageenan, a local inflammatory agent. T2 increased in the inflamed muscle and transitioned to bi-exponential behavior. In diffusion measurements, all three eigenvalues and the apparent diffusion coefficient increased, but λ3 had the largest relative change. Analysis of the qMT data revealed that the T1 of the free pool and the observed T1 both increased in the inflamed tissue, while the ratio of exchanging spins in the solid pool to those in the free water pool (the pool size ratio) significantly decreased. DCE-MRI data also supported observations of an increase in extracellular volume. These findings enriched the understanding of the relation between multiple quantitative MRI parameters and an isolated inflammatory pathology, and may potentially be employed for other single or complex myopathy models.

Multi-parametric MRI Characterization of Healthy Human Thigh Muscles at 3.0 T - Relaxation, Magnetization Transfer, Fat/water, and Diffusion Tensor Imaging

NMR in Biomedicine. Sep, 2014  |  Pubmed ID: 25066274

Muscle diseases commonly have clinical presentations of inflammation, fat infiltration, fibrosis, and atrophy. However, the results of existing laboratory tests and clinical presentations are not well correlated. Advanced quantitative MRI techniques may allow the assessment of myo-pathological changes in a sensitive and objective manner. To progress towards this goal, an array of quantitative MRI protocols was implemented for human thigh muscles; their reproducibility was assessed; and the statistical relationships among parameters were determined. These quantitative methods included fat/water imaging, multiple spin-echo T2 imaging (with and without fat signal suppression, FS), selective inversion recovery for T1 and quantitative magnetization transfer (qMT) imaging (with and without FS), and diffusion tensor imaging. Data were acquired at 3.0 T from nine healthy subjects. To assess the repeatability of each method, the subjects were re-imaged an average of 35 days later. Pre-testing lifestyle restrictions were applied to standardize physiological conditions across scans. Strong between-day intra-class correlations were observed in all quantitative indices except for the macromolecular-to-free water pool size ratio (PSR) with FS, a metric derived from qMT data. Two-way analysis of variance revealed no significant between-day differences in the mean values for any parameter estimate. The repeatability was further assessed with Bland-Altman plots, and low repeatability coefficients were obtained for all parameters. Among-muscle differences in the quantitative MRI indices and inter-class correlations among the parameters were identified. There were inverse relationships between fractional anisotropy (FA) and the second eigenvalue, the third eigenvalue, and the standard deviation of the first eigenvector. The FA was positively related to the PSR, while the other diffusion indices were inversely related to the PSR. These findings support the use of these T1 , T2 , fat/water, and DTI protocols for characterizing skeletal muscle using MRI. Moreover, the data support the existence of a common biophysical mechanism, water content, as a source of variation in these parameters.

A Rapid Approach for Quantitative Magnetization Transfer Imaging in Thigh Muscles Using the Pulsed Saturation Method

Magnetic Resonance Imaging. Apr, 2015  |  Pubmed ID: 25839394

Quantitative magnetization transfer (qMT) imaging in skeletal muscle may be confounded by intramuscular adipose components, low signal-to-noise ratios (SNRs), and voluntary and involuntary motion artifacts. Collectively, these issues could create bias and error in parameter fitting. In this study, technical considerations related to these factors were systematically investigated, and solutions were proposed. First, numerical simulations indicate that the presence of an additional fat component significantly underestimates the pool size ratio (F). Therefore, fat-signal suppression (or water-selective excitation) is recommended for qMT imaging of skeletal muscle. Second, to minimize the effect of motion and muscle contraction artifacts in datasets collected with a conventional 14-point sampling scheme, a rapid two-parameter model was adapted from previous studies in the brain and spinal cord. The consecutive pair of sampling points with highest accuracy and precision for estimating F was determined with numerical simulations. Its performance with respect to SNR and incorrect parameter assumptions was systematically evaluated. QMT data fitting was performed in healthy control subjects and polymyositis patients, using both the two- and five-parameter models. The experimental results were consistent with the predictions from the numerical simulations. These data support the use of the two-parameter modeling approach for qMT imaging of skeletal muscle as a means to reduce total imaging time and/or permit additional signal averaging.

simple hit counter