JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
JoVE Bioengineering
JoVE Bioengineering merges both physical and life sciences to understand and predict biological processes. Applying physical science tools to life science questions allow for the discovery of better technologies to measure, diagnose, and clinically treat disease.
 JoVE Bioengineering

Quantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing

1Department of Neurosurgery, University Medical Center Utrecht, 2Brain Center Rudolf Magnus, University Medical Center Utrecht


JoVE 51623

Extracellular vesicles play important roles in physiological and pathological processes, including coagulation, immune responses, and cancer or as potential therapeutic agents in drug delivery or regenerative medicine. This protocol presents methods for the quantification and size characterization of isolated and non-isolated extracellular vesicles in various fluids using tunable resistive pulse sensing.

 JoVE Bioengineering

CometChip: A High-throughput 96-Well Platform for Measuring DNA Damage in Microarrayed Human Cells

1Department of Biological Engineering, Massachusetts Institute of Technology, 2Environmental Toxicology, Chulabhorn Graduate Institute, 3Department of Biomedical Engineering, University of Minnesota


JoVE 50607

We describe here a platform that allows comet assay detection of DNA damage with unprecedented throughput. The device patterns mammalian cells into a microarray and enables parallel processing of 96 samples. The approach facilitates analysis of base level DNA damage, exposure-induced DNA damage and DNA repair kinetics.

 JoVE Bioengineering

Bead Aggregation Assays for the Characterization of Putative Cell Adhesion Molecules

1Department of Neuroscience, Ohio State University


JoVE 51762

Here we present a simple, rapid method for characterizing the intrinsic adhesive properties of putative cell adhesion molecules. The secreted, epitope-tagged ectodomain of a cell adhesion molecule is captured from the culture medium on small, uniform functionalized beads. These beads can then be used immediately in simple bead aggregation assays.

 JoVE Bioengineering

Flying Insect Detection and Classification with Inexpensive Sensors

1Department of Computer Science and Engineering, University of California, Riverside, 2Department of Entomology, University of California, Riverside, 3Institute of Mathematics and Computer Sciences, University of São Paulo - USP, 4ISCA Technologies


JoVE 52111

We proposed a system that uses inexpensive, noninvasive pseudo-acoustic optical sensors to automatically and accurately detect, count, and classify flying insects based on their flying sound.

 JoVE Bioengineering

Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles

1Heart Research Center Goettingen, 2Clinic of Cardiology & Pulmonology, University Medical Center Goettingen, 3German Center for Cardiovascular Research (DZHK) partner site Goettingen, 4BioMET, Center for Biomedical Engineering & Technology, University of Maryland School of Medicine


JoVE 51823

In cardiac myocytes, tubular membrane structures form intracellular networks. We describe optimized protocols for i) isolation of myocytes from mouse heart including quality control, ii) live cell staining for state-of-the-art fluorescence microscopy, and iii) direct image analysis to quantify the component complexity and the plasticity of intracellular membrane networks.

 JoVE Bioengineering

Cultivation of Mammalian Cells Using a Single-use Pneumatic Bioreactor System

1Center for Biotechnology Education, Johns Hopkins University, 2PBS Biotech, Inc.


JoVE 52008

Using a pneumatic bioreactor, we demonstrate the assembly, operation, and performance of this single-use bioreactor system for the growth of mammalian cells.

 JoVE Bioengineering

From Fast Fluorescence Imaging to Molecular Diffusion Law on Live Cell Membranes in a Commercial Microscope

1NEST Laboratory, Scuola Normale Superiore, 2Center for Nanotechnology Innovation, Instituto Italiano di Tecnologia, 3Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine


JoVE 51994

Spatial distribution and temporal dynamics of plasma membrane proteins and lipids is a hot topic in biology. Here this issue is addressed by a spatio-temporal image fluctuation analysis that provides conceptually the same physical quantities of single particle tracking, but it uses small molecular labels and standard microscopy setups.

 JoVE Bioengineering

Analysis of Cell Migration within a Three-dimensional Collagen Matrix

1Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University


JoVE 51963

Cell migration is a biological phenomenon that is involved in a plethora of physiological, such as wound healing and immune responses, and pathophysiological processes, like cancer. The 3D-collagen matrix migration assay is a versatile tool to analyze the migratory properties of different cell types within in a 3D physiological-like environment.

 JoVE Bioengineering

Utilization of Microscale Silicon Cantilevers to Assess Cellular Contractile Function In Vitro

1NanoScience Technology Center, University of Central Florida


JoVE 51866

This protocol describes the use of microscale silicon cantilevers as pliable culture surfaces for measuring the contractility of muscle cells in vitro. Cellular contraction causes cantilever bending, which can be measured, recorded, and converted into readouts of force, providing a non-invasive and scalable system for measuring contractile function in vitro.

 JoVE Bioengineering

Tissue Engineering: Construction of a Multicellular 3D Scaffold for the Delivery of Layered Cell Sheets

1School of Engineering, University of California, Merced


JoVE 51044

For creation of highly organized structures of complex tissue, one must assemble multiple material and cell types into an integrated composite. This combinatorial design incorporates organ-specific layered cell sheets with two distinct biologically-derived materials containing a strong fibrous matrix base, and endothelial cells for enhancing new vessels formation.

More Results...
Waiting
simple hit counter