JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology

| 

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
JoVE Bioengineering
JoVE Bioengineering merges both physical and life sciences to understand and predict biological processes. Applying physical science tools to life science questions allow for the discovery of better technologies to measure, diagnose, and clinically treat disease.
 JoVE Bioengineering

Eye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model

1MatTek Corporation, 2MatTek In Vitro Life Science Laboratories


JoVE 52979

We have developed an eye irritation test which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model. The test is able to discriminate between ocular irritant and corrosive materials (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category).

 JoVE Bioengineering

Composite Scaffolds of Interfacial Polyelectrolyte Fibers for Temporally Controlled Release of Biomolecules

1Department of Biomedical Engineering, National University of Singapore, 2Mechanobiology Institute, Singapore, National University of Singapore, 3Department of Surgery, National University of Singapore


JoVE 53079

Scaffolds for tissue engineering need to recapitulate the complex biochemical and biophysical microenvironment of the cellular niche. Here, we show the use of interfacial polyelectrolyte complexation fibers as a platform to create composite, multi-component polymeric scaffolds with sustained biochemical release.

 JoVE Bioengineering

Live Cell Imaging during Mechanical Stretch

1Department of Physiology, University of Tennessee Health Science Center, 2Department of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, 3Department of Biomedical Engineering, University of Memphis, 4Department of Engineering Technology, University of Memphis


JoVE 52737

A novel imaging protocol was developed using a custom motor-driven mechanical actuator to allow the measurement of real time responses to mechanical strain in live cells. Relevant to mechanobiology, the system can apply strains up to 20% while allowing near real-time imaging with confocal or atomic force microscopy.

 JoVE Bioengineering

Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development

1Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, 2Department of Surgery, Feinberg School of Medicine, Northwestern University, 3Department of Biomedical Engineering, Northwestern University, 4Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, 5Department of Internal Medicine, University of New Mexico HSC, 6Department of Pathology, University of New Mexico HSC, 7Department of Chemical and Biological Engineering, Northwestern University, 8Chemistry of Life Processes Institute, Northwestern University, 9Department of Surgery, Jesse Brown VA Medical Center


JoVE 53271

This protocol describes decellularization of Sprague Dawley rat kidneys by antegrade perfusion of detergents through the vasculature, producing acellular renal extracellular matrices that serve as templates for repopulation with human renal epithelial cells. Recellularization and use of the resazurin perfusion assay to monitor growth is performed within specially-designed perfusion bioreactors.

 JoVE Bioengineering

Procedure for Decellularization of Rat Livers in an Oscillating-pressure Perfusion Device

1General, Visceral, and Transplantation Surgery, Charité – Universitätsmedizin Berlin


JoVE 53029

The presented techniques for liver harvesting, cannulation and perfusion using our proprietary device enable sophisticated perfusion set-ups to improve decellularization and recellularization experiments in rat livers.

 JoVE Bioengineering

Sandwich-like Microenvironments to Harness Cell/Material Interactions

1Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 2Division of Biomedical Engineering, School of Engineering, University of Glasgow, 3Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)


JoVE 53090

The following protocol describes the procedure to assemble sandwich-like cultures to be used as an intermediate stage between bi-dimensional (2D) and three-dimensional (3D) cellular environments. The engineered systems can have applications in microscopy, biomechanics, biochemistry and cell biology assays.

 JoVE Bioengineering

Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell

1Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 2Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 3Charles Perkins Centre, The University of Sydney, 4Institute of Biophysics, Laboratory of RNA Biology, Chinese Academy of Sciences, 5University of Chinese Academy of Sciences, 6School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University


JoVE 52975

We describe a technique for concurrently measuring force-regulated single receptor-ligand binding kinetics and real-time imaging of calcium signaling in a single T lymphocyte.

 JoVE Bioengineering

Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

1Division of Drug Delivery and Tissue Engineering, University of Nottingham, 2Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 3Division of Immunology and Allergy, School of Molecular Medical Sciences, University of Nottingham, 4Division of Respiratory Medicine, School of Clinical Sciences, University of Nottingham, 5NIHR Respiratory Biomedical Research Unit, University of Leicester, 6School of Sport, Exercise, and Health Sciences, Loughborough University


JoVE 52986

Advancements in biomaterial technologies enable the development of three-dimensional multi-cell-type constructs. We have developed electrospinning protocols to produce three individual scaffolds to culture the main structural cells of the airway to provide a 3D in vitro model of the airway bronchiole wall.

 JoVE Bioengineering

Gene Transfection toward Spheroid Cells on Micropatterned Culture Plates for Genetically-modified Cell Transplantation

1Graduate School of Medicine, Laboratory of Clinical Biotechnology, The University of Tokyo, 2Graduate School of Engineering, Department of Materials Engineering, The University of Tokyo, 3Graduate School of Engineering, Department of Bioengineering, The University of Tokyo


JoVE 52384

This protocol describes a cell transplantation system using genetically modified, injectable spheroids. Cell spheroids are cultured on micropatterned culture plates and recovered after gene introduction using polyplex nanomicelles. This system facilitates prolonged transgene expression from the transplanted cells in host animals while maintaining the innate function of the cells.

 JoVE Bioengineering

Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers

1Interfaculty Institute for Biochemistry, 2Max Planck Institute for Intelligent Systems, 3German Cancer Research Center


JoVE 52867

We describe a protocol for preparation of supported lipid bilayers and its characterization using atomic force microscopy and force spectroscopy.

More Results...
Waiting
simple hit counter