JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Biology 1

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Biology 2

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Behavioral Science

You do not have subscription access to videos in this collection. Learn more about access.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Medicine
Bioengineering
Engineering
Chemistry
Behavior
Environment
Developmental Biology
 
 
JoVE Bioengineering
JoVE Bioengineering merges both physical and life sciences to understand and predict biological processes. Applying physical science tools to life science questions allow for the discovery of better technologies to measure, diagnose, and clinically treat disease.
 JoVE Bioengineering

Athymic Rat Model for Evaluation of Engineered Anterior Cruciate Ligament Grafts

1Department of Orthopaedic Surgery, University of California Los Angeles, 2Department of Bioengineering, University of California Los Angeles


JoVE 52797

Animal models are important tools for the evaluation of tissue-engineered grafts. This paper presents the protocol for preparing an electrospun biodegradable polymer graft for use in anterior cruciate ligament tissue engineering, as well as a surgical protocol for implantation in a rat model.

 JoVE Bioengineering

Simple Polyacrylamide-based Multiwell Stiffness Assay for the Study of Stiffness-dependent Cell Responses

1Biomedical Engineering Department, Saint Louis University


JoVE 52643

Here, a method that enables quick, efficient, and inexpensive preparation of polyacrylamide gels in a multiwell plate format is described. The method does not require any specialized equipment and could be easily adopted by any research laboratory. It would be particularly useful in research focused on understanding stiffness-dependent cell responses.

 JoVE Bioengineering

Generation and Grafting of Tissue-engineered Vessels in a Mouse Model

1Cardiovascular Division, King's College London BHF Centre


JoVE 52565

Here, we present a protocol to generate tissue engineered vessel grafts that are functional for grafting into mice by double seeding partially induced pluripotent stem cell (PiPSC) - derived smooth muscle cells and PiPSC - derived endothelial cells on a decellularized vessel scaffold bioreactor.

 JoVE Bioengineering

An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles

1Division of Chemistry and Chemical Engineering, California Institute of Technology, 2Department of Molecular Medicine, Beckman Research Institute of the City of Hope


JoVE 52355

Gallium(III) 5,10,15-(tris)pentafluorophenylcorrole and its freebase analogue exhibit low micromolar cell cytotoxicity. This manuscript describes an RNA transcription reaction, imaging RNA with an ethidium bromide-stained gel, and quantifying RNA with UV-Vis spectroscopy, in order to assess transcription inhibition by corroles and demonstrates a straightforward method of evaluating anticancer candidate properties.

 JoVE Bioengineering

Sealable Femtoliter Chamber Arrays for Cell-free Biology

1Bredesen Center, University of Tennessee, Knoxville, 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 3Department of Materials Science and Engineering, University of Tennessee, Knoxville


JoVE 52616

A microfabricated device with sealable femtoliter-volume reaction chambers is described. This report includes a protocol for sealing cell-free protein synthesis reactants inside these chambers for the purpose of understanding the role of crowding and confinement in gene expression.

 JoVE Bioengineering

Methods for Characterizing the Co-development of Biofilm and Habitat Heterogeneity

1Department of Civil and Environmental Engineering, Northwestern University, 2Department of Chemical and Biological Engineeering, Northwestern University, 3Department of Applied Mathematics and Engineering Sciences, Northwestern University


JoVE 52602

Biofilms have complex interactions with their surrounding environment. To comprehensively investigate biofilm-environment interactions, we present here a series of methods to create heterogeneous chemical environment for biofilm development, to quantify local flow velocity, and to analyze mass transport in and around biofilm colonies.

 JoVE Bioengineering

A Microfluidic Chip for ICPMS Sample Introduction

1Department of Chemistry and Applied Biosciences, ETH Zurich


JoVE 52525

We present a discrete droplet sample introduction system for inductively coupled plasma mass spectrometry (ICPMS). It is based on a cheap and disposable microfluidic chip that generates highly monodisperse droplets in a size range of 40−60 µm at frequencies from 90 to 7,000 Hz.

 JoVE Bioengineering

Generation of a Three-dimensional Full Thickness Skin Equivalent and Automated Wounding

1Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 2Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskelettal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB


JoVE 52576

The goal of this protocol is to build up a three-dimensional full thickness skin equivalent, which resembles natural skin. With a specifically constructed automated wounding device, precise and reproducible wounds can be generated under maintenance of sterility.

 JoVE Bioengineering

Using Cell-substrate Impedance and Live Cell Imaging to Measure Real-time Changes in Cellular Adhesion and De-adhesion Induced by Matrix Modification

1Centre for Vascular Research, University of New South Wales, 2School of Medical Sciences, University of New South Wales


JoVE 52423

Here, we present a protocol to continuously quantify cell adhesion and de-adhesion processes with high temporal resolution in a non-invasive manner by cell-substrate impedance and live cell imaging analyses. These approaches reveal the dynamics of cell adhesion/de-adhesion processes triggered by matrix modification and their temporal relationship to adhesion-dependent signaling events.

 JoVE Bioengineering

Novel Atomic Force Microscopy Based Biopanning for Isolation of Morphology Specific Reagents against TDP-43 Variants in Amyotrophic Lateral Sclerosis

1School for Engineering of Matter, Transport and Energy, Arizona State University, 2Department of Neurology, Georgetown University Medical Center, 3Department of Pathology, Georgetown University Medical Center


JoVE 52584

Using atomic force microscopy in combination with biopanning technology we created a negative and positive biopanning system to acquire antibodies against disease-specific protein variants present in any biological material, even at low concentrations. We were successful in obtaining antibodies to TDP-43 protein variants involved in Amyotrophic Lateral Sclerosis.

More Results...
Waiting
simple hit counter