JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Biology 1

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Biology 2

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Behavioral Science

You do not have subscription access to videos in this collection. Learn more about access.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Medicine
Bioengineering
Engineering
Chemistry
Behavior
Environment
Developmental Biology
 
 
JoVE Engineering
JoVE Engineering encompasses a broad range of experimental and instrumental techniques utilized in physics research. Investigations in this area strive to address and answer a broad range of scientific questions, such as device mechanisms and efficiencies, using physical tools. This approach often requires a combination of specialties, and research in this area tends to be interdisciplinary with contributions from mechanical, electrical, and chemical engineers.
 JoVE Engineering

Surface Enhanced Raman Spectroscopy Detection of Biomolecules Using EBL Fabricated Nanostructured Substrates

1Department of Electrical and Computer Engineering, University of Alberta, 2National Institute for Nanotechnology, National Research Council of Canada


JoVE 52712

We describe the fabrication and characterization of nano-biological systems interfacing nanostructured substrates with immobilized proteins and aptamers. The relevant experimental steps involving lithographic fabrication of nanostructured substrates, bio-functionalization, and surface-enhanced Raman spectroscopy (SERS) characterization, are reported. SERS detection of surface-immobilized proteins, and probing of protein-ligand and aptamer-ligand binding is demonstrated.

 JoVE Engineering

Laser-induced Forward Transfer for Flip-chip Packaging of Single Dies

1Center for Microsystems Technology (CMST), Ghent University-imec


JoVE 52623

We demonstrate the use of the Laser-induced Forward Transfer (LIFT) technique for flip-chip assembly of optoelectronic components. This approach provides a simple, cost-effective, low-temperature, fast and flexible solution for fine-pitch bumping and bonding on chip-scale for achieving high-density circuits for optoelectronic applications.

 JoVE Engineering

Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

1Physik-Department E22a, Technische Universität München, 2IMETUM, Technische Universität München


JoVE 52456

A protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. Procedures and examples to determine the adhesion force and free energy of these molecules on solid supports and bio-interfaces are provided.

 JoVE Engineering

Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

1Department of Earth Science and Engineering, Imperial College London


JoVE 52440

We present a methodology for the imaging of multiple fluid phases at reservoir conditions by the use of x-ray microtomography. We show some representative results of capillary trapping in a carbonate rock sample.

 JoVE Engineering

Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes

1Jülich Supercomputing Centre, Forschungszentrum Jülich, 2Materials Science and Technology of Polymer, MESA+ Institute for Nanotechnology, University of Twente, 3Department of Materials Science and Engineering, Universität des Saarlandes


JoVE 52285

The methodology to perform friction force microscopy experiments for contacting brushes is presented: Two polymer brushes that are grafted from (a) substrates and (b) colloidal probes are slid to show that, by using two contacting immiscible brush systems, friction in sliding contacts is reduced compared to miscible brush systems.

 JoVE Engineering

Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

1Materials Science and Engineering, School of Engineering, University of California Merced


JoVE 51384

A new computational system featuring GPU-accelerated molecular dynamics simulation and 3D/VR visualization, analysis and manipulation of nanostructures has been implemented, representing a novel approach to advance materials research and promote innovative investigation and alternative methods to learn about material structures with dimensions invisible to the human eye.

 JoVE Engineering

A Testing Platform for Durability Studies of Polymers and Fiber-reinforced Polymer Composites under Concurrent Hygrothermo-mechanical Stimuli

1Department of Mechanical and Aerospace Engineering, University of California, Davis


JoVE 52464

The durability of polymers and fiber-reinforced polymer composites in service is a critical aspect for their designs and condition-based maintenance. We present a novel low-cost laboratory testing platform for the investigation of the influence of concurrent mechanical and environmental loadings, and may help design more efficient yet safer composite structures.

 JoVE Engineering

Patterning via Optical Saturable Transitions - Fabrication and Characterization

1Department of Electrical and Computer Engineering, The University of Utah, 2Department of Chemistry, The University of Wisconsin-Madison


JoVE 52449

We report that the diffraction limit of conventional optical lithography can be overcome by exploiting the transitions of organic photochromic derivatives induced by their photoisomerization at low light intensities.1-3 This paper outlines our fabrication technique and two locking mechanisms, namely: dissolution of one photoisomer and electrochemical oxidation.

 JoVE Engineering

Casting Protocols for the Production of Open Cell Aluminum Foams by the Replication Technique and the Effect on Porosity

1Department of Materials Science and Engineering, The University of Sheffield, 2Department of Mechanical Engineering, The University of Sheffield


JoVE 52268

Replication is one of the processing techniques used for the production of porous metal sponges. In this paper one implementation of the method for the production of open celled porous aluminum is shown in detail.

 JoVE Engineering

Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres

1Lasers, Optics, & Targets for the National Ignition Facility, Lawrence Livermore National Laboratory


JoVE 51965

A novel optical polishing process, called “Convergent Polishing”, which enables faster, lower cost polishing, is described. Unlike conventional polishing processes, Convergent Polishing allows a glass workpiece to be polished in a single iteration and with high surface quality to its final surface figure without requiring changes to polishing parameters.

More Results...
Waiting
simple hit counter