Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
DNA Repair Enzymes: Enzymes that are involved in the reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule, which contained damaged regions.
 JoVE Biology

Quantitative, Real-time Analysis of Base Excision Repair Activity in Cell Lysates Utilizing Lesion-specific Molecular Beacons

1Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 2Hillman Cancer Center, University of Pittsburgh Cancer Institute, 3Department of Experimental Therapy, The Netherlands Cancer Institute, 4Department of Human Genetics, University of Pittsburgh School of Public Health


JoVE 4168

 JoVE Biology

Deficient Pms2, ERCC1, Ku86, CcOI in Field Defects During Progression to Colon Cancer

1Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, 2Southern Arizona Veterans Affairs Health Care System, Tucson, AZ, 3Department of Surgery, College of Medicine, University of Arizona, Tucson, 4Biomedical Diagnostics and Research, Tucson, AZ, 5Department of Medicine, College of Medicine, University of Arizona, Tucson


JoVE 1931

 JoVE Chemistry

Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates

1Laboratory for Molecular Cancer Biology, Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 2Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University


JoVE 53563

 JoVE Developmental Biology

Efficient Generation of hiPSC Neural Lineage Specific Knockin Reporters Using the CRISPR/Cas9 and Cas9 Double Nickase System

1Department of Neurosurgery, The University of Texas Health Science Center at Houston, 2Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 3The Senator Lloyd & B. A. Bentsen Center for Stroke Research, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 4Summer Research Program, Office of Educational Programs, The University of Texas Health Science Center at Houston, 5Department of Anesthesiology, Shengjing Hospital, China Medical University, 6Department of Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 7Biology Department, University of West Georgia


JoVE 52539

 JoVE Biology

Hi-C: A Method to Study the Three-dimensional Architecture of Genomes.

1Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 2Broad Institute of Harvard and Massachusetts Institute of Technology, 3Division of Health Sciences and Technology, Massachusetts Institute of Technology, 4Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, 5Department of Applied Mathematics, Harvard University, 6Department of Physics, Massachusetts Institute of Technology, 7Department of Systems Biology, Harvard Medical School, 8Department of Biology, Massachusetts Institute of Technology


JoVE 1869

 Science Education: Essentials of Genetics

Recombineering and Gene Targeting

JoVE Science Education

One of the most widely used tools in modern biology is molecular cloning with restriction enzymes, which create compatible ends between DNA fragments that allow them to be joined together. However, this technique has certain restrictions that limit its applicability for large or complex DNA construct generation. A newer technique that addresses some of these shortcomings is recombineering, which modifies DNA using homologous recombination (HR), the exchange between different DNA molecules based on stretches of similar or identical sequences. Together with gene targeting, which takes advantage of endogenous HR to alter an organism’s genome at a specific loci, HR-based cloning techniques have greatly improved the speed and efficacy of high-throughput genetic engineering.In this video, we introduce the principles of HR, as well as the basic components required to perform a recombineering experiment, including recombination-competent organisms and genomic libraries such as bacterial artificial chromosomes (BAC). We then walk through a protocol that uses recombineering to generate a gene-targeting vector that can ultimately be transfected into embryonic stem cells to generate a transgenic animal. Finally, several applications that highlight the utility and variety of recombineering techniques wi

 JoVE Bioengineering

Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles

1Department of Bioengineering, University of Illinois at Urbana-Champaign, 2Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, 3Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 4Program of Study and Control of Tropical Diseases (PECET), University of Antioquia, 5Sealy Center for Vaccine Development, University of Texas Medical Branch, 6WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, 7Beckman Institute, University of Illinois at Urbana-Champaign


JoVE 52951

12345678945
More Results...
Waiting
simple hit counter