Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

24.13: Energy Associated With a Charge Distribution

TABLE OF
CONTENTS
JoVE Core
Physics

A subscription to JoVE is required to view this content.

Education
Energy Associated With a Charge Distribution
 
TRANSCRIPT

24.13: Energy Associated With a Charge Distribution

The work done to bring a charge through a distance r is given by the potential difference between the initial and the final position. To assemble a collection of point charges, the total work done can be expressed in terms of the product of each pair of charges divided by their separation distance, defined with respect to a suitable origin. Solving this expression gives the energy stored in a point charge distribution.

Equation1

Consider an infinitesimal charge element in a configuration of continuous charge distribution enclosed in a definite volume. The product of the volume charge density and the volume of the element gives the total charge in this element. The energy stored in this configuration of continuous charge distribution is given by integrating volume charge density and the corresponding potential.   

Applying Gauss's law in its differential form, the volume charge density can be written in terms of the electric field. Using the product rule in this expression gives the divergence of the electric field. The volume integral can be written as a surface integral using Gauss's divergence theorem. Rewriting the potential in terms of the electric field gives the energy stored in this configuration.

Equation2

Recall that to obtain the expression for work done, the integration must be performed over the region where the charge is located. Even if the integration is performed over a larger volume, the work done remains conserved as the charge density in the extra volume is zero.

The surface integral of an electric field, which relates to electric potential energy, depends on factors beyond distance, such as charge distribution and system geometry. To calculate total energy, integration over all space, considering the entire volume, is necessary, as the electric field alone at the surface does not provide the complete picture.

Equation3


Suggested Reading

Tags

Energy Charge Distribution Potential Difference Point Charges Separation Distance Origin Energy Stored Charge Element Continuous Charge Distribution Volume Charge Density Volume Integral Electric Field Gauss's Law Differential Form Product Rule Divergence Theorem Potential Work Done Conserved

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter