Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

2.5: Chemical Equilibria: Redefining Equilibrium Constant

TABLE OF
CONTENTS
JoVE Core
Analytical Chemistry

A subscription to JoVE is required to view this content.

Education
Chemical Equilibria: Redefining Equilibrium Constant
 
TRANSCRIPT

2.5: Chemical Equilibria: Redefining Equilibrium Constant

The effect of an inert salt on the solubility of a sparingly soluble salt is known as the salt effect. The degree of the salt effect varies with the ionic strength of the solution, which in turn depends on the activity of the species in the solution. The activity is expressed as the product of concentration and the activity coefficient of the species.

To calculate the equilibrium constants of solutions of moderately high ionic strength, one must account for the salt effect. This redefined equilibrium constant is also called the thermodynamic equilibrium constant or standard equilibrium constant, as it expresses the Gibbs energy change of the process. The thermodynamic equilibrium constant incorporates the ionic strength of the solution.

In solutions of low ionic strength (nearly an ideal solution), the activity coefficient is close to 1. Thus, the thermodynamic equilibrium constant is approximately equal to the concentration equilibrium constant.

The activity coefficient corrections are often ignored to simplify the experimental calculations of equilibrium constants. This approximation is valid for dilute solutions containing singly charged ions or non-dissociating species with ionic strengths lower than 0.01 mol/L. Activity coefficient corrections become more critical for solutions with ionic strengths greater than 0.01 mol/L or of multiply charged ions. Ignoring the activity coefficient in such cases results in significant errors in calculations.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter