Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

Merkmale der Niederschlag gebildet Polyethylene Glycol-Mikrogele durch Molekulargewicht der Reaktanden Controlled

Published: December 23, 2013 doi: 10.3791/51002

Abstract

Diese Arbeit beschreibt die Bildung von Poly (ethylenglycol) (PEG)-Mikrogele über eine photopolymerisierte Fällungsreaktion. Fällungsreaktionen bieten mehrere Vorteile gegenüber herkömmlichen Mikrokügelchen Herstellungstechniken. Entgegen der Emulsion, Suspension, Dispersion und Techniken sind von gleicher Form und Größe Mikrogele durch Ausfällung gebildet, dh geringer Polydispersitätsindex ohne die Verwendung von organischen Lösemitteln oder Stabilisatoren. Die milden Bedingungen der Fällungsreaktion, anpassbare Eigenschaften der Mikrogele und niedrige Viskosität für Injektions machen sie gelten für in-vivo-Zwecke. Im Gegensatz zu anderen Herstellungstechniken können Mikrogel Eigenschaften durch Veränderung der Ausgangspolymermolekulargewicht geändert werden. Die Erhöhung der Start PEG-Molekulargewicht erhöht Mikrogel Durchmesser und Quellverhältnis. Weitere Modifikationen sind wie Kapselung Moleküle während Mikrogel Vernetzung vorgeschlagen. Einfache Anpassungen der PEG microgel Bausteine ​​sind für zukünftige Anwendungen der Mikrogele als Drug-Delivery-Fahrzeuge und Tissue Engineering Scaffolds erforscht.

Materials

Name Company Catalog Number Comments
Phosphate Buffered Saline (PBS) MP Biomedical 2810305
Triethanolamine (TEOA) J.T. Baker 9468-01 Preheat to 37 °C prior to pipetting
Hydrochloric acid (HCl) BDH Aristar BDH3028
Sodium Sulfate J.T. Baker 3891-01
Irgacure 2959 Ciba 029891301PS04
Ovalbumin (OVA) Invitrogen 34782
PEG 1,500 Alfa Aesar A16241
PEG 3,000 Fluka 03997-1KG
PEG 4,000 Alfa Aesar A16151
PEG 4,600 Sigma 373001-250G
PEG 6,000 Fluka 03394-1KG
PEG 10,000 Alfa Aesar B21955
Dextran 70 TCI D1449

DOWNLOAD MATERIALS LIST

References

  1. McNaught, A. D., Wilkinson, A. IUPAC Compendium of Chemical Terminology (The Gold Book). 2nd edn. , Blackwell Scientific Publications. (1997).
  2. Lu, S. X., Anseth, K. S. Release behavior of high molecular weight solutes from poly(ethylene glycol)-based degradable networks. Macromolecules. 33, 2509-2515 (2000).
  3. Peppas, N. A. Hydrogels in Medicine. 1, CRC Press, Inc. (1986).
  4. West, J. L., Hubbell, J. A. Photopolymerized hydrogel materials for drug delivery applications. React. Polym. 25, 139-147 (1995).
  5. Hunkeler, D., et al. Theories and Mechanism of Phase Transitions, Heterophase Polymerizations, Homopolymerization, Addition Polymerization. Advances in Polymer Science. 112, Springer. Berlin Heidelberg, Ch. 115-133 (1994).
  6. Arshady, R. Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid Polym. Sci. 270, 717-732 (1992).
  7. Bai, F., Yang, X. L., Huang, W. Q. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules. 37, 9746-9752 (2004).
  8. Bailey, F., Callard, R. W. Some properties of poly(ethylene oxide) in aqueous solution. J. Appl. Polym. Sci. 1, 56-62 (1959).
  9. Cruise, G. M., Scharp, D. S., Hubbell, J. A. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 19, 1287-1294 (1998).
  10. Flory, P. Principles in Polymer Chemistry. , Cornell University Press. (1953).
  11. Flake, M. M., et al. Poly (ethylene glycol) microparticles produced by precipitation polymerization in aqueous solution. Biomacromolecules. 12, 844-850 (2011).
  12. Sawhney, A. S., Pathak, C. P., Hubbell, J. A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers. Macromolecules. 26, 581-587 (1993).
  13. Scott, R. A., Elbert, D. L., Willits, R. K. Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells. Acta Biomaterialia. 7, 3841-3849 (2011).
  14. Ianeselli, L., et al. Protein-Protein Interactions in Ovalbumin Solutions Studied by Small-Angle Scattering: Effect of Ionic Strength and the Chemical Nature of Cations. J. Phys. Chem. B. 114, 3776-3783 (2010).
  15. Scott, R., Marquardt, L., Willits, R. K. Characterization of poly(ethylene glycol) gels with added collagen for neural tissue engineering. J. Biomed. Mater. Res. A.. 93, 817-823 (2010).
  16. Lin, H., Kai, T., Freeman, B. D., Kalakkunnath, S., Kalika, D. S. The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate). Macromolecules. 38, 8381-8393 (2005).
  17. Mellott, M. B., Searcy, K., Pishko, M. V. Release of protein from highly cross-;linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials. 22, 929-941 (2001).
  18. Bryant, S. J., Anseth, K. S., Lee, D. A., Bader, D. L. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J. Orthop. Res. 22, 1143-1149 (2004).
  19. Padmavathi, N. C., Chatterji, P. R. Structural Characteristics and Swelling Behavior of Poly(ethylene glycol) Diacrylate Hydrogels. Macromolecules. 29, 1976-1979 (1996).
  20. Ross, A. E., Tang, M. Y., Gemeinhart, R. A. Effects of molecular weight and loading on matrix metalloproteinase-2 mediated release from poly(ethylene glycol) diacrylate hydrogels. AAPS J. 14, 482-490 (2012).
  21. Sun, G., Zhang, X. -Z., Chu, C. -C. Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels. J. Materi. Sci. Mater. Med. 19, 2865-2872 (2008).
  22. Zustiak, S. P., Leach, J. B. Characterization of Protein Release From Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogels. Biotechnol. Bioeng. 108, 197-206 (2011).
  23. Ruan, G., Feng, S. S. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials. 24, 5037-5044 (2003).
  24. Loxley, A., Vincent, B. Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels. Colloid Polym. Sci. 275, 1108-1114 (1997).
  25. Vivaldo-Lima, E., Wood, P. E., Hamielec, A. E., Penlidis, A. An updated review on suspension polymerization. Ind. Eng. Chem. Res. 36, 939-965 (1997).
  26. Ritger, P. L., Peppas, N. A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release. 5, 23-36 (1987).
  27. Matsumoto, A., Kitazawa, T., Murata, J., Horikiri, Y., Yamahara, H. A novel preparation method for PLGA microspheres using non-balogenated solvents. J. Controlled Release. 129, 223-227 (2008).
Merkmale der Niederschlag gebildet Polyethylene Glycol-Mikrogele durch Molekulargewicht der Reaktanden Controlled
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Thompson, S., Stukel, J., AlNiemi,More

Thompson, S., Stukel, J., AlNiemi, A., Willits, R. K. Characteristics of Precipitation-formed Polyethylene Glycol Microgels Are Controlled by Molecular Weight of Reactants. J. Vis. Exp. (82), e51002, doi:10.3791/51002 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter