基于 P 值方法的假设检验过程包括使用样本数据计算 P 值并对其进行解释。
首先,提出了关于 population 参数的具体声明。该声明基于研究问题,并以简单的形式陈述。此外,还陈述了对索赔的反对声明。这些陈述可以充当原假设和替代假设:原假设将是中性陈述,而替代假设可以有方向。如果备择假设涉及有关 population 参数的特定方向,则备择假设也可以是原始声明。
一旦假设被陈述出来,它们就会被象征性地表达出来。按照惯例,原假设将包含相等符号,而备择假设可能包含 >、< 或 ≠ 符号。
在进一步进行假设检验之前,必须确定适当的显著性水平。普遍共识是将显著性水平设置为 95%(即 0.95)或 99%(即 0.99)水平。这里的α分别为 0.05 或 0.01。
接下来,确定适当的检验统计量。比率和平均值(当总体标准差已知时)是 z 统计量。对于平均值,当总体标准差未知时,它是 t 统计量,对于方差(或 SD),它是卡方统计量。
计算检验统计量后,以电子方式或从相应的 P 值表中查找 P 值,并将其与预先确定的显著性水平进行比较。如果 P 值小于预先确定的显著性水平,则否定原假设。
对假设或总体属性的原始声明的解释必须基于 P 值。
P 值方法使用计算的 P 值而不是临界值来得出有关假设的决策。
作为第一步,以象征性的方式陈述和表达假设。
为了检验总体的比例、平均值或标准差,原假设和备择假设表示如下。
下一步,确定显著性水平α,通常为 0.05 或 0.01。
此外,使用样本数据选择和计算适当的检验统计量。
然后,此检验统计量用于直接计算 P 值。
P 值是获得检验统计量值至少与从样本数据中获得的统计量值一样极端的概率。我们可以绘制一个分布,该分布显示给定的检验统计量和 P 值。
如果计算的 P 值等于或小于确定的显著性水平,则拒绝原假设;否则,我们无法拒绝原假设。
Related Videos
Hypothesis Testing
11.0K 浏览
Hypothesis Testing
8.2K 浏览
Hypothesis Testing
11.9K 浏览
Hypothesis Testing
6.9K 浏览
Hypothesis Testing
26.4K 浏览
Hypothesis Testing
5.4K 浏览
Hypothesis Testing
4.0K 浏览
Hypothesis Testing
27.9K 浏览
Hypothesis Testing
4.2K 浏览
Hypothesis Testing
3.3K 浏览
Hypothesis Testing
2.7K 浏览
Hypothesis Testing
3.5K 浏览
Hypothesis Testing
2.5K 浏览