The goal of this article is to describe a refined method of intubation of the laboratory mouse. The method is noninvasive and, therefore, ideal for studies that require serial monitoring of respiratory function and/or instillation of treatments into the lung.
The literature describes several methods for mouse intubation that either require visualization of the glottis through the oral cavity or incision in the ventral neck for direct confirmation of cannula placement in the trachea. The relative difficulty or the tissue trauma induced to the subject by such procedures can be an impediment to an investigator’s ability to perform longitudinal studies. This article illustrates a technique in which physical manipulation of the mouse following the use of a depilatory to remove hair from the ventral neck permits transcutaneous visualization of the trachea for orotracheal intubation regardless of degree of skin pigmentation. This method is innocuous to the subject and easily achieved with a limited understanding of murine anatomy. This refined approach facilitates repeated intubation, which may be necessary for monitoring progression of disease or instillation of treatments. Using this method may result in a reduction of the number of animals and technical skill required to measure lung function in mouse models of respiratory disease.
The laboratory mouse is a common animal model for human respiratory disease. Thus, there are several published methods for mouse intubation for the purpose of both instillation of treatments and measurement of respiratory mechanics. Most of the described procedures require visualization of the glottis through the oral cavity with specialized equipment such as a laryngoscope or fiber-optic light source1,2,3,4,5,6,7. However, this can be difficult when a relatively large cannula is required, as it can obscure the view of the researcher. Limjunyawong et al.8 have addressed this concern with a method of intubation in which a small cutaneous incision is made along the midline of the ventral neck allowing for visualization of the trachea. Following the procedure, the incision is closed with tissue adhesive.
For studies requiring frequent repeated intubations, successive incising and closure of this site requires debridement of the skin margins and tissue trauma to the ventral neck. The purpose of the transcutaneous tracheal visualization approach to oral intubation is to provide a refined, noninvasive technique specifically suitable for repeated intubation studies as well as single intubation events in mice.
All animal activities described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of The Ohio State University and were conducted in AAALAC-accredited facilities.
1. Procedure Preparation
2. Intubation Procedure
3. Recovery
Serial monitoring of baseline pulmonary function
Eighteen-week-old female BALB/c and 10-week-old C57BL/6 mice (n = 3 of each strain) were intubated using the described method on day 0, 3, 10, and 17. Following intubation on each day, the subject was connected to a mechanical ventilator supplied with 100% oxygen (Table of Materials). Respiratory resistance (Rrs) was measured using the forced oscillation technique for 60 s following a deep inflation to 25 cm H2O held for 5 s. No software errors associated with this sustained breath hold along with Rrs values within physiological range provide additional support for proper placement of the cannula. Data revealed no significant differences of measured Rrs observed between time points within each strain (Figure 5). It is assumed that the absence of an increase in Rrs over time indicates lack to trauma-associated inflammation in the respiratory system over four successive time points.
Statistical analysis
Descriptive statistics (mean and standard error) were calculated using statistical analysis software (Table of Materials). The Kolmogorov-Smirnov method was used to verify the Gaussian data distribution. Statistical analyses of datasets were made by unpaired ANOVA, with a post hoc Tukey-Kramer multiple comparison post-test. All data are presented as mean ± SEM. P < 0.05 was considered statistically significant.
Figure 1: Intubation platform. The intubation platform consists of a three-ring binder with a loop of silk thread adhered to the top of the binder to create a suspension loop. Please click here to view a larger version of this figure.
Figure 2: Cannula preparation. (A) Lateral view of the prepared cannula. Note the gentle angle created approximately 1 cm from the rounded bevel at the distal end of the catheter and the orientation of the cannula angle in relation to the bevel. (B) Dorsoventral view of the prepared cannula. Note the rounded and smoothed edge of the bevel. Please click here to view a larger version of this figure.
Figure 3: Tracheal visualization. (A) Forceps are placed on the ventral neck and the skin is gently retracted caudally to laterally displace the salivary glands and provide visualization of the trachea as a white structure on ventral midline (black arrow). (B) Craniodorsal rotation of the forceps on the ventral neck creates a protrusion of the salivary glands (*). The trachea is visualized as the white linear structure on ventral midline between the salivary glands (black arrow). Please click here to view a larger version of this figure.
Figure 4: Proper cannula placement. (A) C57BL/6 mouse positioned on the intubation platform with the cannula introduced into the proximal oral cavity. (B) C57BL/6 mouse with the cannula properly placed in the trachea. Note the cannula can be easily visualized as the white structure within the trachea (white arrow). (C) BALB/c mouse positioned on the intubation board with the cannula introduced into the proximal oral cavity. (D) BALB/c mouse with the cannula properly placed in the trachea. The white cannula can be easily visualized within the trachea (black arrow). Please click here to view a larger version of this figure.
Figure 5: Serial measurement of resistance. No significant differences of measured Rrs observed between time points within each strain. Please click here to view a larger version of this figure.
Intubation using the transcutaneous tracheal visualization technique offers a refined approach to the standard skin incision method. With special attention to several key steps, intubation can be easily and quickly achieved. The animal must be placed squarely in dorsal recumbency on the intubation platform with the mouse secured in gentle retraction. This will extend the animal into vertical alignment and proper positioning for intubation. In addition, the depilatory cream should not remain in contact with the animal’s skin for longer than 30−45 s and should be thoroughly rinsed to removal all residue. Extended skin contact with the depilatory cream will cause unnecessary pain for the animal and ulcerations can obstruct the view of the trachea9. It is imperative to use the proper wrist motion as the dominant hand introduces the catheter into the glottis. The dominant wrist should flex while the hand moves in a supination motion. It is also critical to monitor the subject closely as the flat edge of the forceps are pressed on the ventral neck to visualize the trachea. Pressure from the forceps will occlude the trachea and cause hypoxia if maintained for a prolonged duration. If the patient appears cyanotic, allow a brief pause for mucus membranes to return to a pink color and for respiration to stabilize before repeating attempts.
Extensive mouse intubation experience was not necessary to perform this technique. The most common complications in inexperienced individuals include laryngeal trauma and upper airway inflammation due to multiple intubation attempts. Close monitoring is necessary during the recovery of these patients as medical intervention with nonsteroidal anti-inflammatories may be indicated. Repeated unsuccessful intubation attempts may result in tissue trauma and inflammation of the distal oral cavity, which could result in upper respiratory noise, dyspnea, hypoxemia, prolonged recovery, inability to perform repeated intubation or death.
Several modifications are recommended in the event that intubation is not successful. First, ensure the bevel of the cannula is smooth, rounded and cut to the appropriate length for the animal’s size. The bevel edge may be smoothed using abrasive paper to minimize tissue trauma and facilitate intubation7. In addition, check that the cannula exhibits a slight curve of approximately 15° at one-third distance away from the bevel and the tip of the cannula is beveled at a 45° angle as described in Brown et al.6. Always check that the catheter is in the proper orientation before and while performing this procedure.
For this study, mice were intubated for repeated lung function tests using a mechanical ventilation system to record lung function measurements. A large, 18 G cannula was used to create a tight seal. To perform repeat lung function studies on mice with a smaller tracheal diameter due to age or strain, it may be challenging to place a larger cannula. If a smaller cannula is elected for use, ensure that a proper seal can still be achieved, and that the resistance of the cannula is not higher than resistance of the test subject’s airway10. A successful deep inflation perturbation is adequate confirmation of an appropriate seal. Note that such a seal is unnecessary if only installation of treatments into the lung is desired.
Although the described method has made modifications that prevent external tissue damage, the upper limit of frequency of intubation is still a function of cumulative trauma to the glottis and trachea due to excessive introduction of the cannula. Concurrent monitoring of a control group for significant increases in airway resistance during a study is recommended since tissue trauma is accompanied by inflammation that will result in decreased luminal diameter of the trachea. Significant increases in airway resistance over the course of repeated intubation procedures were not observed in the current study. Mice remained clinically normal for the study duration and gross necropsy of upper airway structures was unremarkable at study conclusion in all animals.
In summary, the described intubation technique offers a noninvasive method for placing endotracheal cannulas with minimal equipment including an inclined surface, forceps, a polypropylene cannula and depilatory supplies. This refined method enables repeated intubation events without recurrent tissue trauma and pain associated with a cutaneous incision site on the ventral neck or a tracheotomy procedure. In addition, this method reduces the number of mice required as individual mice may be repeatedly intubated throughout the course of a study. It also eliminates the need for specially designed intubation restraint devices, scopes or transilluminating equipment for airway visualization. BALB/c and C57BL/6 strains were used in this study to demonstrate technique success in both light and dark pigmented strains and animals of a relatively young age and small size (10−20 week-old mice). This refined technique is suitable for single or repeated intratracheal instillation of compounds, bronchoalveolar lavage, imaging or lung function testing. This minimally invasive, versatile method can be implemented for virtually any procedure that requires access to the lower respiratory tract.
The authors have nothing to disclose.
The authors thank Lucia Rosas, Lauren Doolittle, Lisa Joseph and Lindsey Ferguson for their technical assistance and the University Laboratory Animal Resources for their animal care support. This work is funded by NIH T35OD010977 and R01-HL102469.
18Gx1 1/4" intravenous catheter, Safelet | Fisher Scientific | #14-841-14 | Cannula for intubation |
70% ethanol, 10L | Fisher Scientific | 25467025 | Cleaning cannula |
Abrasive paper (sandpaper) | Porter-Cable | 74001201 | Cannula preparation |
AnaSed (xylazine sterile solution) injection (100 mg/ml) | Akorn Animal Health | NDC# 59399-111-50 | Anesthesia |
Blue labeling tape (0.5 in x 14 yds) | Fisher Scientific | 15966 | Restraint on intubation platform |
Braided silk suture without needle, nonsterile, (3-0) | Henry Schein | Item #1007842 | Intubation platform |
Deltaphase Isothermal Pad | Braintree Scientific | 39DP | Mouse thermoregulation and recovery |
Deltaphase Operating Board | Braintree Scientific | 39OP | Mouse recovery (prior to extubation) |
Distilled water | ThermoFisher | 15230253 | Cleaning mouse following depilation |
Eye Scissors, angled, sharp/sharp | Harvard Apparatus | 72-8437 | Cannula preparation |
FlexiVent (FX Module 2) | Scireq | N/A | Record lung function data (not required to perform procedure, used in this study to validate procedure) |
Gauze sponges | Fisher scientific | 13-761-52 | Hair removal |
Heavy-Duty 3" 3-Ring View Binders | Staples | 24690CT | Intubation platform |
Instat Software | Graphpad | N/A | Statistical analysis software |
Insulin syringe (0.5 cc, U100) | Fisher Scientific | 329461 | Anesthesia administration |
Ketamine HCl Injection, USP (100 mg/ml) | Llyod Laoratories | List No. 4871 | Anesthesia |
Lung inflation bulb | Harvard Apparatus | 72-9083 | Confirm cannula placement |
Micro Forceps, Curved, Smooth | Harvard Apparatus | 72-0445 | Retract tongue and create tension on neck for cannula visualization |
Nair (hair removal lotion), 9 oz bottle | Church & Dwight | 42010440 | Hair removal |
Sterile saline (0.9%), 10 ml | Fisher Scientific | NC9054335 | Anesthesia, cleaning skin following hair removal |