Summary

晶状体皮层和晶状体核束和单纤维细胞的制备和免疫荧光染色

Published: June 09, 2023
doi:

Summary

该协议描述了制备用于免疫荧光染色的外周,成熟和核眼晶状体纤维细胞的方法,以研究复杂的细胞间指和膜结构。

Abstract

晶状体是眼睛前房中的透明椭圆形器官,它改变形状以将光线精细地聚焦到视网膜上以形成清晰的图像。这种组织的大部分由特化的分化纤维细胞组成,这些细胞具有六边形横截面,从晶状体的前极延伸到后极。这些又长又细的细胞与相邻的细胞紧密相对,并且沿细胞的长度具有复杂的指间。晶状体的正常生物力学特性需要特殊的互锁结构,并且已使用电子显微镜技术进行了广泛的描述。该协议展示了第一种方法来保存和免疫染色单一以及小鼠晶状体纤维细胞束,以允许在这些复杂形状的细胞内详细定位蛋白质。代表性数据显示晶状体所有区域的外周细胞、分化细胞、成熟细胞和核纤维细胞的染色。该方法可用于从其他物种的晶状体中分离的纤维细胞。

Introduction

晶状体是眼睛前房中的透明卵形组织,由两种细胞类型组成,即上皮细胞和纤维细胞1(图1)。有一层单层上皮细胞覆盖晶状体的前半球。纤维细胞从上皮细胞分化而来,构成晶状体的大部分。高度特化的纤维细胞经历伸长、分化和成熟编程,其特征是从晶状体外围到晶状体中心的细胞膜形态发生明显变化 2,3,4,5,6,7,8,9,10,11,12 ,也称为晶状体核。晶状体对从不同距离射入视网膜的光线进行精细聚焦的功能取决于其生物力学特性,包括刚度和弹性 13、14、15、16、17、1819晶状体纤维的复杂交叉已被假设 20,21,最近被证明对晶状体刚度很重要 22,23

Figure 1
1:晶状体纤维的晶状体解剖图和代表性扫描电子显微镜 (SEM) 图像。这幅漫画显示了上皮细胞前单层(浅蓝色阴影)和大量晶状体纤维细胞(白色)的纵向(从上到下从前到后)视图。晶状体的中心(粉红色阴影)被称为细胞核,由高度致密的纤维细胞组成。在右边,一幅横截面的卡通图显示了排列成蜂窝状的透镜纤维的细长六边形细胞形状。纤维细胞有两个宽边和四个短边。底部的代表性SEM图像显示了晶状体不同深度的晶状体纤维细胞之间的复杂膜状交叉。从右边看,晶状体周边新形成的透镜纤维沿短边有小突起,沿宽边有球窝(红框)。在成熟过程中,晶状体纤维会形成大的桨状结构域,这些桨状结构域由沿短边的小突起(蓝色框)装饰。成熟的纤维细胞具有大的桨状结构域,由小突起表示。这些互锁域对晶状体的生物力学特性很重要。晶状体核中的纤维细胞沿其短边具有较少的小突起,并具有复杂的榫槽状指(紫色框)。细胞的宽边显示球状膜形态。这幅漫画是从22,32 修改而来的没有按比例绘制。比例尺 = 3 μm。 请点击这里查看此图的较大版本.

晶状体通过添加覆盖在前几代纤维24,25 上的新纤维细胞壳来生长。纤维细胞具有细长的六边形横截面形状,具有两个宽边和四个短边。这些细胞从晶状体的前极延伸到后极,根据物种的不同,晶状体纤维的长度可以达到几毫米。为了支持这些细长和瘦小细胞的结构,沿着宽边和短边的专门的指状结构创造了互锁结构,以保持晶状体形状和生物力学特性。电子显微镜 (EM) 研究广泛记录了纤维细胞分化和成熟过程中细胞膜形状的变化 2,3,4,5,6,7,8,9,10,20,26,27,28,29 .新形成的纤维细胞在其宽边上有球窝,短边有非常小的突起,而成熟纤维的短边有互锁的突起和桨。核纤维呈榫槽状交叉和球状膜形态。对于这些复杂的互锁膜所需的蛋白质知之甚少。以前关于纤维细胞中蛋白质定位的研究依赖于晶状体组织切片,这无法清晰地可视化复杂的细胞结构。

这项工作创造并完善了一种新方法,可以固定单个和成束的晶状体纤维细胞,以保持复杂的形态,并允许对细胞膜和细胞质内的蛋白质进行免疫染色。该方法忠实地保留了细胞膜结构,可与EM研究的数据相媲美,并允许使用特定蛋白质的一抗进行染色。我们之前对正在经历分化和成熟的皮质晶状体纤维进行了免疫染色22,23。在该协议中,还有一种从晶状体细胞核染色纤维细胞的新方法。该协议为了解纤维细胞成熟和晶状体细胞核压实过程中膜指的形成和变化机制打开了大门。

Protocol

小鼠已根据印第安纳大学布卢明顿分校机构动物护理和使用委员会批准的动物协议进行护理。用于生成代表性数据的小鼠是 C57BL6/J 背景的对照(野生型)动物、雌性和 8-12 周龄。雄性和雌性小鼠都可用于该实验,因为小鼠的性别不太可能影响实验结果。 1.晶状体解剖和开封 按照美国国立卫生研究院的“实验动物护理和使用指南”以及该机构批准的动物使用协议对小鼠实施安乐死。注:在本研究中,小鼠被 CO2 过量安乐死,然后根据批准的动物方案(印第安纳大学)进行宫颈脱位。 使用弯曲的镊子将眼睛从小鼠身上移开,方法是用镊子的一侧压住眼睛周围的组织,将眼睛移出眼窝。接下来,关闭眼睛下方的镊子并提起以将眼睛从眼窝中取出。将眼睛转移到解剖托盘中的新鲜1x磷酸盐缓冲盐水(PBS)中。 用超细剪刀尽可能靠近眼球剪断视神经。小心地将细尖直镊子通过眼后视神经出口插入眼球。 小心地将剪刀插入与步骤 1.3 中镊子相同的位置,然后开始从后部向角膜-巩膜交界处切开切口。注意:啮齿动物的晶状体占据了眼睛的 ~30%。如果镊子或剪刀插入眼睛太深,就会发生意外损坏。 继续沿着角膜-巩膜交界处切割,直到至少一半的交界处分离。 使用镊子轻轻推动角膜,使晶状体可以通过步骤 1.4 和 1.5 的切口退出。 使用细尖直镊子小心地从镜片上去除任何大块组织。检查镜头以找到赤道区域。 使用细尖直镊子浅刺穿镜片,然后取出镜片囊。晶状体纤维细胞的质量将保持完整,晶状体上皮单层将保持附着在晶状体囊上。丢弃镜片胶囊。 2.晶状体单纤维细胞染色 将晶状体纤维细胞团转移到装有500μL新制备的1%多聚甲醛(PFA;在1x PBS溶液中)的孔板中,并将样品在4°C下孵育过夜,轻轻振动(图2A)。注意:给定溶液的体积针对 48 孔板进行了优化。如果使用其他尺寸的孔板或试管,请相应地调整溶液的体积。用10x PBS和双蒸水(ddH2O)制成固定,封闭和洗涤(1x PTX,0.1%Triton X-100在1x PBS中)溶液至终浓度为1x PBS。 将晶状体纤维细胞转移到含有 1% PFA 的 60 mm 培养皿中。使用锋利的手术刀沿其前后轴将纤维细胞球分成两半(图2B)。沿同一轴再次将两半切成两半,以产生四分之一。注意:前后轴很容易通过组织团块中纤维细胞的方向来识别。 使用直镊子从晶状体纤维细胞区去除细胞核区域(图2C)。注意:啮齿动物晶状体的晶状体核区域是刚性的,晶状体的中心很容易与较软的皮质纤维分离。 在室温(RT)下轻轻摇动(在板振荡器上300rpm),将晶状体皮层区域的四分之一固定在200μL的1%PFA中15分钟。 在750μL的1x PBS中洗涤组织四分之一两次,每次5分钟,在室温下轻轻摇动。 使用200μL封闭溶液(5%血清,0.3%Triton X-100,1x PBS)在室温下轻轻摇动封闭样品1小时。注:对于本协议中的代表性数据,样品未用一抗或二抗染色。封闭步骤后,将样品与小麦胚芽凝集素(WGA;1:100)和鬼笔环肽(1:100)(见材料表)在室温下孵育3小时,轻轻摇晃并避光。一抗染色已在先前的出版物中得到证实22,23。 用100μL一抗溶液在4°C下孵育过夜,轻轻摇动。注:抗体在封闭液中稀释。与带有组织切片的载玻片相比,这种类型的制剂中有更多的细胞。应增加一抗浓度,以提供充足的抗体来染色更多细胞。建议将组织切片上使用的抗体浓度增加一倍。这同样适用于二抗。 在室温下用1x PTX(0.1%Triton X-100,1x PBS)洗涤组织区三次,每次5分钟,轻轻摇动。 将纤维细胞与 100 μL 二抗/染料溶液在室温下轻轻摇动孵育 3 小时。在此步骤和后续步骤中保护样品免受光照。注:WGA、鬼笔环肽和其他荧光染料可以添加到二抗溶液中,用于同时标记细胞膜、细胞骨架或其他细胞器,同时标记一抗。 在室温下用1x PTX洗涤纤维细胞四次,每次5分钟,轻轻摇动。 在将组织区转移到载玻片上之前,将一滴或 50 μL 的封片介质添加到带正电荷的显微镜载玻片上。 使用镊子轻轻地将纤维细胞彼此分开,并尝试限制细胞束的重叠。 在封固剂中轻轻地将 #1.5 盖玻片涂在样品顶部。封固介质应扩散到盖玻片的边缘;如果没有发生这种情况,请在盖玻片的边缘添加一些额外的封固剂。吸走盖玻片边缘周围多余的封片介质,并使用指甲油将盖玻片的边缘密封在载玻片上。注:为共聚焦显微镜配制的任何类型的封固剂都可用于这些实验。 3.晶状体核单纤维细胞染色 完成第 1 节中概述的剖析。 通过轻轻地将纤维细胞团转移到湿的戴手套的指尖并轻轻滚动组织团块,从晶状体纤维细胞球中机械地去除皮质纤维,离开晶状体核。注:在小鼠晶状体中,在戴手套的指尖之间滚动晶状体纤维细胞球是从硬晶状体核中去除皮质纤维细胞的有效方法28,30。对于这种机械方法无效的晶状体,可以使用仔细解剖或涡旋方法29去除皮质纤维细胞。 将晶状体核转移到孔板中新鲜制备的1%PFA溶液中,并在4°C下轻轻摇动孵育过夜。 将样品转移到含有1%PFA的60mm培养皿中,并使用锋利的手术刀沿前后轴分裂晶状体核。再次将组织样本减半以产生细胞核四分之一。 按照步骤 2.4-2.13 中概述的过程进行免疫染色和样品封片。 图 2:详细介绍晶状体纤维细胞制备和 免疫染色的图形摘要。 (A) 该 48 孔板已按色谱柱进行颜色编码,以演示所述方法的样品板设置,通过使用镊子轻柔处理,允许在各种免疫染色步骤之间轻松转移样品。虽然该方案的代表性数据未与一抗一起孵育,但该图包括用于一抗孵育的柱,并且在通过抽吸除用过的洗涤缓冲液后,可以重复使用用于洗涤的孔。(B)固定晶状体纤维细胞团后,组织沿前后轴(红色虚线)分裂,以保留细胞的原始结构。一旦组织团块减半,将样品旋转,并将两半沿前后轴(红色虚线)分成四分之一。(C) 使用镊子从皮质纤维细胞(蓝色)中挖出致密的中央组织,很容易去除晶状体核区域(粉红色)。卡通图部分是使用 BioRender.com 创建的,而不是按比例绘制的。 请点击这里查看此图的较大版本.

Representative Results

晶状体纤维细胞由晶状体皮层(分化纤维和成熟纤维)和细胞核制备,细胞用鬼笔环肽染色用于F-肌动蛋白,用WGA染色用于细胞膜。观察细胞束或单晶状体纤维的混合物(图3)并成像。从晶状体皮层中,发现了两种类型的细胞(图3A)。晶状体周边的分化纤维细胞是直的,沿其短边有非常小的突起。随着细胞的分化,纤维细胞变成波浪状,并带有小的?…

Discussion

该方案已经证明了固定,保存和免疫染色方法,这些方法忠实地保留了晶状体中不同深度的束或单个晶状体纤维细胞的3D膜形态。将染色的晶状体纤维与长期用于研究晶状体纤维细胞形态的SEM制剂进行比较。结果表明,两种制剂之间的膜结构相当。EM 仍然是研究细胞形态的金标准,但在 SEM 样品中定位蛋白质333435 的免疫标?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国家眼科研究所的 R01 EY032056(至 CC)资助。作者感谢斯克里普斯研究核心显微镜设施的Theresa Fassel博士和Kimberly Vanderpool对电子显微镜图像的帮助。

Materials

100% Triton X-100 FisherScientific BP151-500
60mm plate FisherScientific FB0875713A
16% paraformaldehyde Electron Microscopy Sciences 15710
10X phosphate buffered saline ThermoFisher 70011-044
1X phosphate buffered saline ThermoFisher 14190136
48-well plate CytoOne CC7672-7548
Cover slips (22 x 40 mm) FisherScientific 12-553-467
Curved tweezers World Precision Instruments 501981
Dissection microscope Carl Zeiss Stereo Discovery V8
Fine tip straight tweezers Electron Microscopy Sciences 72707-01
Fisherbrand Superfrost Plus Microscope Slides FisherScientific 12-550-15
LSM 800 confocal microscope with Airyscan (63X) and Zen 3.5 Software Carl Zeiss
Nail polish
Normal donkey serum Jackson ImmunoResearch 017-000-121
Phalloidin (rhodamine) ThermoFisher R415
Primary antibody
Scalpel Feather Disposable, steril, No. 11 VWR 76241-186
Secondary antibody
Straight forceps World Precision Instruments 11252-40
Thermo Scientific Nunc MicroWell MiniTrays (dissection tray) FisherScientific 12-565-154
Ultra-fine scissors World Precision Instruments 501778
VECTASHIELD Antifade Mounting Medium with DAPI Vector Laboratories H-1200
Wheat germ agglutinin (fluorescein) Vector Laboratories FL-1021-5

References

  1. Lovicu, F. J., McAvoy, J. W. Growth factor regulation of lens development. 发育生物学. 280 (1), 1-14 (2005).
  2. Kuszak, J., Alcala, J., Maisel, H. The surface morphology of embryonic and adult chick lens-fiber cells. The American Journal of Anatomy. 159 (4), 395-410 (1980).
  3. Kuszak, J. R. The ultrastructure of epithelial and fiber cells in the crystalline lens. International Review of Cytology. 163, 305-350 (1995).
  4. Kuszak, J. R., Macsai, M. S., Rae, J. L. Stereo scanning electron microscopy of the crystalline lens. Scanning Electron Microscopy. , 1415-1426 (1983).
  5. Lo, W. K., Harding, C. V. Square arrays and their role in ridge formation in human lens fibers. Journal of Ultrastructure Research. 86 (3), 228-245 (1984).
  6. Taylor, V. L., et al. Morphology of the normal human lens. Investigative Ophthalmology & Visual Science. 37 (7), 1396-1410 (1996).
  7. Vrensen, G. F. Aging of the human eye lens-a morphological point of view. Comparative Biochemistry and Physiology. Part A, Physiology. 111 (4), 519-532 (1995).
  8. Vrensen, G. F., Duindam, H. J. Maturation of fiber membranes in the human eye lens. Ultrastructural and Raman microspectroscopic observations. Ophthalmic Research. 27, 78-85 (1995).
  9. Willekens, B., Vrensen, G. The three-dimensional organization of lens fibers in the rabbit. A scanning electron microscopic reinvestigation. Albrecht von Graefe’s Archive for Clinical and Experimental Opthalmology. 216 (4), 275-289 (1981).
  10. Willekens, B., Vrensen, G. The three-dimensional organization of lens fibers in the rhesus monkey. Graefe’s Archive for Clinical and Experimental Ophthalmology. 219 (3), 112-120 (1982).
  11. Zhou, C. J., Lo, W. K. Association of clathrin, AP-2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells. Experimental Eye Research. 77 (4), 423-432 (2003).
  12. Kuwabara, T. The maturation of the lens cell: a morphologic study. Experimental Eye Research. 20 (5), 427-443 (1975).
  13. Weeber, H. A., Eckert, G., Pechhold, W., vander Heijde, R. G. Stiffness gradient in the crystalline lens. Graefe’s Archive for Clinical and Experimental Ophthalmology. 245 (9), 1357-1366 (2007).
  14. Weeber, H. A., et al. Dynamic mechanical properties of human lenses. Experimental Eye Research. 80 (3), 425-434 (2005).
  15. Weeber, H. A., vander Heijde, R. G. On the relationship between lens stiffness and accommodative amplitude. Experimental Eye Research. 85 (5), 602-607 (2007).
  16. Heys, K. R., Cram, S. L., Truscott, R. J. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia. Molecular Vision. 10, 956-963 (2004).
  17. Heys, K. R., Friedrich, M. G., Truscott, R. J. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Aging Cell. 6 (6), 807-815 (2007).
  18. Glasser, A., Campbell, M. C. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Research. 39 (11), 1991-2015 (1999).
  19. Pierscionek, B. K. Age-related response of human lenses to stretching forces. Experimental Eye Research. 60 (3), 325-332 (1995).
  20. Biswas, S. K., Lee, J. E., Brako, L., Jiang, J. X., Lo, W. K. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens. Molecular Vision. 16, 2328-2341 (2010).
  21. Lo, W. K., et al. Aquaporin-0 targets interlocking domains to control the integrity and transparency of the eye lens. Investigative Ophthalmology & Visual Science. 55 (3), 1202-1212 (2014).
  22. Cheng, C., et al. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. Journal of Cell Science. 131 (23), (2018).
  23. Cheng, C., et al. Tropomodulin 1 regulation of actin is required for the formation of large paddle protrusions between mature lens fiber cells. Investigative Ophthalmology & Visual Science. 57 (10), 4084-4099 (2016).
  24. Kuszak, J. R. The development of lens sutures. Progress in Retinal and Eye Research. 14 (2), 567-591 (1995).
  25. Bassnett, S., Costello, M. J. The cause and consequence of fiber cell compaction in the vertebrate lens. Experimental Eye Research. 156, 50-57 (2017).
  26. Biswas, S., Son, A., Yu, Q., Zhou, R., Lo, W. K. Breakdown of interlocking domains may contribute to formation of membranous globules and lens opacity in ephrin-A5(-/-) mice. Experimental Eye Research. 145, 130-139 (2016).
  27. Blankenship, T., Bradshaw, L., Shibata, B., Fitzgerald, P. Structural specializations emerging late in mouse lens fiber cell differentiation. Investigative Ophthalmology & Visual Science. 48 (7), 3269-3276 (2007).
  28. Cheng, C., et al. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging. 11 (24), 12497-12531 (2019).
  29. Cheng, C., et al. EphA2 affects development of the eye lens nucleus and the gradient of refractive index. Investigative Ophthalmology & Visual Science. 63 (1), 2 (2022).
  30. Cheng, C., Gokhin, D. S., Nowak, R. B., Fowler, V. M. Sequential application of glass coverslips to assess the compressive stiffness of the mouse lens: strain and morphometric analyses. Journal of Visualized Experiments. (111), e53986 (2016).
  31. Forrester, J. V., Dick, A. D., McMenamin, P. G., Roberts, F., Pearlman, E., Saunders, W. B. Anatomy of the eye and orbit. The Eye (Fourth Edition). , 1 (2016).
  32. Cheng, C., Nowak, R. B., Fowler, V. M. The lens actin filament cytoskeleton: Diverse structures for complex functions. Experimental Eye Research. 156, 58-71 (2017).
  33. Goldberg, M. W., Fiserova, J. Immunogold labeling for scanning electron microscopy. Methods in Molecular Biology. 1474, 309-325 (2016).
  34. Goldberg, M. W. High-resolution scanning electron microscopy and immuno-gold labeling of the nuclear lamina and nuclear pore complex. Methods in Molecular Biology. 1411, 441-459 (2016).
  35. Hermann, R., Walther, P., Muller, M. Immunogold labeling in scanning electron microscopy. Histochemistry and Cell Biology. 106 (1), 31-39 (1996).
  36. Gokhin, D. S., et al. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 7 (11), e48734 (2012).

Play Video

Cite This Article
Vu, M. P., Cheng, C. Preparation and Immunofluorescence Staining of Bundles and Single Fiber Cells from the Cortex and Nucleus of the Eye Lens. J. Vis. Exp. (196), e65638, doi:10.3791/65638 (2023).

View Video