在土壤中的蚯蚓种群的分析

JoVE Science Education
Environmental Science
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Environmental Science
Analysis of Earthworm Populations in Soil

16,438 Views

07:03 min
April 30, 2023

Overview

资料来源: 玛格丽特工人和金伯利弗莱-Depaul 大学实验室

用芥末,可以直接从土壤深处没有景观干扰或毒性采样地龙蒺藜蚯蚓的种群。蚯蚓然后可以计算数据和统计分析使用条形图和学生氏 t-检验。

多个物种的蚯蚓 (尤其是那些从亚目 Lumbricina) 有创蔓延在整个北美和南美,监测蚯蚓的种群是环境科学家,关键技术。充满异国情调的蚯蚓可以发现在几乎每一片土地上,大规模的和在地球上几乎每一个生态系统中,何时何地这些物种成为创一直国际环境研究的一个重点。1

生态入侵通常通过直接影音、 危害,或以其他方式造成本土物种的灭亡而降低了生物多样性的生态系统。作为生态系统工程师,创蚯蚓物种改变养分循环通过有机物质的分解速率上表层的土壤,在植物的根系矿井为营养。地龙物种都有灭绝本机蚯蚓物种和已被证明增加速效氮浓度和入侵土壤中氮的速率。2在一个正反馈循环,加速的水平的氮反过来使系统更好客是适应高水平的氮相比,天然植物物种的入侵植物物种和将胜过了土著人的现象被称为”入侵崩溃”。创蚯蚓物种蚯蚓(欧洲蚯蚓) 和入侵植物物种鼠李属 cathartica (欧洲沙棘) 提出了一种入侵危机关系。3

Principles

解决方案是备辣椒素提取辣芥末然后再倒直接到土壤采样样方内地面上对样品从每个集合站点。集合地点比较三个随机样本从已被入侵的欧洲沙棘三个随机样本从原状的地区的面积确定。一旦倒直接在地面上,芥末解决方案可以穿透下来土壤基质对蚯蚓的驻留位置。在芥末辣椒素引起粘膜发炎。蚯蚓身体暴露在芥子气液对辣椒素刺激作出反应远离芥末解决方案,来到了土壤地表将自己暴露在氧气,从而减少刺激。后浮出水面,蚯蚓可以收集和人口密度分析与欧洲沙棘的关系。人口的每个集合网站手段相比是一个条形图,以确定是否与其他物种的地区有更多的蚯蚓,从而支持入侵危机的存在。学生氏 T-检验用来确定是否在两个站点有明显不同,支持拟欧洲蚯蚓和欧洲沙棘之间存在的侵袭性崩溃假设。

Procedure

1.芥末浓缩溶液的制备

  1. 打开平衡,在上面,放重船,零余额。
  2. 称出 38.1 g 的地面到东方芥末权衡船和转移到盖塑料瓶。
  3. 测量 100 毫升的量筒自来水,并添加到芥末的塑料容器。
  4. 安全在容器上的盖和使劲摇动,直到所有芥末是混合的塑料容器的底部和溶解成自来水。
  5. 让坐 24 小时最大辣椒素提取芥末的解决方案。
  6. 两个 8 L 水载体半路装满自来水 (大约 4 升的水进入每个承运人)。
  7. 多次到混合然后转移芥末摇芥末精矿集中到水载体的解决方案。
  8. 少量的解决方案从水载体转移回精矿容器和摇大力。再倒入水载体转移所有精矿入稀释液。
  9. 密封水载体帽,确保帽阀处于”关闭”位置,并三次反转水载体,混合均匀。

2.蚯蚓提取

  1. 标签为每个集合站点的三个样品杯。
  2. 着手进行采样点与一个样,标记为采样杯带盖和芥末稀释水载体。
  3. 在采样点、 清除掉刷、 叶子或覆盖尽可能清楚地暴露在地上。
  4. 在清除现场地上随机放置样。
  5. 反转一水载体三次混合。
  6. 水载体帽阀转向的”问题”的立场,倒大约三分之一 (1.3 L) 稀释芥末内样方,样方区域的中心集中。如果土壤变得饱和溶液池停止倒酒和等到倒在继续之前内汇集的溶液渗透土壤。
  7. 观察蚯蚓外观为五分钟,包括直接下双方的样方面积密切样方面积。
  8. 用镊子收集由等待蠕虫完全摆脱地面,然后才转到第一个样品杯方形区域中显示的所有蚯蚓。五分钟后盖子样品杯,转到下一个采样站点。
  9. 对于所有的采样点,每个站点集合 (6 复制总数) 的三个重复收集步骤

3.比较蚯蚓收集站点之间的人口密度

  1. 蚯蚓收集每个样本的计数和计算平均值和标准偏差为每个集合站点。
  2. 若要比较蚯蚓密度收集站点之间,从手段创建条形图和使用标准偏差在关系图上创建误差线。

蚯蚓的种群监测至关重要环境科学家,正如创异国蚯蚓可以发现在地球上几乎每一个生态系统中。生态入侵通常通过直接影音、 危害,或促成摘除或当地本土物种灭绝,降低了生物多样性的生态系统。

欧洲的蚯蚓,也被称为蓝魔鬼的蚯蚓物种是在北美,极为常见,但不是本机。因此,它大大连根本机蚯蚓物种。蚯蚓改变通过分解有机质在土壤中,上层的养分循环在植物的根系矿井为养分,从而改变土壤层结构。此外,有机碎片层,含有很多提供养分,分解材料是完全迷失了。

这些创蠕虫也增加入侵土壤速效氮含量。在变,变化的土壤层,高水平的氮使土壤更加好客侵入性植物种类,如欧洲的沙棘,更适用于高水平的氮与天然植物物种。这种现象被称为”侵袭性崩溃”。

侵袭性崩溃欧洲蚯蚓和喜欢欧洲的沙棘是主要关切的因为它正在大大降低北美森林植物生命的多样性的外来植物入侵造成的。

这个视频将演示监测欧洲蚯蚓在公园的各个领域,以评估他们对沙棘入侵的漏洞。

若要确定入侵地区蚯蚓的种群,蠕虫是直接提取土壤使用辣椒素的解决方案。

在这个实验中,辣椒素是提取辣芥末和直接倾吐定义由预大小的广场或样区土壤。然后,它穿过土壤基质对蚯蚓的驻留位置。

辣椒素溶液蚯蚓引起粘膜发炎。蚯蚓移到土壤表面逃脱辣椒碱溶液对刺激作出反应。后浮出水面,蚯蚓进行收集和人口密度分析。

以下的实验将证明蚯蚓提取土壤和他们的人口分析。

首先,准备辣椒素溶液至少 24 h 提前重 38 克的地面东方热芥末酱,并转移到盖塑料瓶。添加到塑料容器包含芥末 100 毫升的自来水。安全容器,带着帽子和使劲摇动,直到所有的芥末溶解在水中。

让坐 24 小时最大辣椒素提取芥末的解决方案。辣椒素提取完成后,稀释 4 升的水中 8-L 水载体的芥末解决方案。几次摇芥末溶液混合,并转入水载体。冲洗任何残余的芥末使用稀释的液。

密封水载体帽,并确保阀门处于”关闭”位置。三次反转水载体,混合均匀。对于每个测试的站点准备一个集装箱的辣椒碱溶液。

着手进行采样点样和芥末溶液稀释水载体。也带来三个取样杯,每个站点。他们应该相应地作出标记,为每个采样站点的三个副本。

在清除现场地面上随机样的地方。清除画笔、 树叶和覆盖尽可能清楚地暴露的土壤。再次,混合稀溶液,然后切换帽阀到开启的位置。

倒入约三分之一的样方,集中绝大多数样区的中心在液体内的芥末稀释。如果土壤变得饱和以及形成池,停止倒酒,并等待,直到汇集的溶液渗入土壤在继续之前。

观察样方面积密切 5 分钟,找蚯蚓外观。一定要看直接下的样方两侧。

等待所有的蚯蚓摆脱样区内土壤,然后用镊子收集他们。5 分钟后,关闭样品杯并继续到下一个采样站点。

对于所有采样点重复收集步骤。返回到每个站点并执行 3 复制每个站点。蚯蚓为每个样本,收集的数量,然后计算平均值和标准偏差为每个集合站点。

创建条形图来比较平均的蚯蚓收集站点之间的人口密度。使用标准偏差来创建的误差线。第一个站点是一个托管的公园,,因此更适于蚯蚓种群由于曝气和肥料等的干扰。网站两是非托管的并因此不利于蚯蚓的种群。

充满异国情调的蚯蚓和欧洲沙棘有牵连的侵袭性崩溃的发生,尤其是在中西部美国的一部分。跟踪蚯蚓的种群可以帮助阐明两个侵袭性物种之间的关系,并使研究人员能够开发方法,以防止进一步蔓延。

你刚看了朱庇特的简介的提取与分析蚯蚓的种群。现在,您应该了解蚯蚓提取土壤及采样点比较的原则。谢谢观赏 !

Results

采样站点 1 是一个托管的公园,看到显著的滋扰,曝气和化肥等。 采样点 2 是一个非托管的领域,看到没有人类的干扰。 如图 1所示,站点 1 密度较高的蚯蚓的种群,可能是因为由于人为干扰的增加好客。 然而,网站 1 也有高变异性的采样,表明蚯蚓种群不可能一致地致密,平均的那样。

Figure 1
图 1.条形图显示人口结果从每个集合站点。

Applications and Summary

外来物种入侵是对生物多样性的主要威胁。充满异国情调的蚯蚓 (如:蚯蚓) 和欧洲沙棘 (鼠李属 cathartica) 有牵连的侵袭性崩溃的发生在中西部美国树木繁茂的社区的一部分。侵袭性的崩溃是一个物种入侵的方便了别人的入侵的过程。因此,生态健康的丧失的速度可以大大加快作为一个物种也使更多的途径。不受欢迎的果中人口目前占 90%以上的植被覆盖在伊利诺伊州,地龙人口景观管理中的作用已成为了解和预测鼠李属入侵对托管土地至关重要。景观干扰往往以方便地龙入侵和地龙人口抽样可以易有可能入侵的土地领域的一个指标。比较的地龙人口抽样调查可以帮助土地管理,知道需要更密集的方法的地方,保持预期的植物多样性,防止鼠李属入侵。

References

  1. Belote, R.T., Jones, R.H.  Tree leaf litter composition and nonnative earthworms influence plant invasion in experimental forest floor mesocosms. Biological Invasions. 11, 1045-1052 (2009).
  2. Costello, D.M., Lamberti, G.A.  Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems. Oecologia. 158, 499-510 (2008).
  3. Nuzzo, V.A., Maerz, J.C., Blossey, B. Earthworm invasion as the driving force behind plant invasion and community change in northeastern north American forests. Conserve Biol.23, 4. 966-974 (2009).

Transcript

The monitoring of earthworm populations is vital to environmental scientists, as invasive exotic earthworms can be found in nearly every ecosystem on the planet. Ecological invasion typically lowers biodiversity of an ecosystem by directly outcompeting, endangering, or contributing to the extirpation, or local extinction, of native species.

The Lumbricus terrestris species of European earthworm, also called the nightcrawler, is extremely common in North America, but is not native. As a result, it has greatly extirpated native earthworm species. Lumbricus terrestris alters the cycling of nutrients through decomposition of organic matter in the upper layers of soil, where plant roots mine for nutrients, thereby changing the soil layer structure. In addition, the organic debris layer, containing much of the decomposing material that provides nutrients, is completely lost.

These invasive worms also increase the available nitrogen concentration in invaded soils. In turn, the changing soil layers and high levels of nitrogen make the soil more hospitable to invasive plant species, such as the European Buckthorn, which are more adapted to high levels of nitrogen as compared to native plant species. This phenomenon is known as “invasional meltdown.”

The invasional meltdown resulting from invasion of the European earthworm and exotic plants like the European buckthorn is of key concern because it is dramatically decreasing the diversity of forest plant life in North America.

This video will demonstrate the monitoring of European earthworms in various park areas in order to assess their vulnerability for buckthorn invasion.

To determine earthworm populations in invaded areas, worms are directly extracted from soil using a capsaicin solution.

In this experiment, capsaicin is extracted from spicy mustard and poured directly onto the soil in an area defined by a pre-sized square, or quadrat. It then penetrates through the soil matrix to where the earthworms reside.

The capsaicin solution causes irritation to mucous membranes in the earthworm. Earthworms react to the irritation by moving to the soil surface to escape the capsaicin solution. After surfacing, earthworms are collected and the population density analyzed.

The following experiment will demonstrate the extraction of earthworms from soil, and their population analysis.

First, prepare the capsaicin solution at least 24 h in advance by weighing 38 g of ground oriental hot mustard, and transferring it to a plastic container with a cap. Add 100 mL of tap water to the plastic container containing mustard. Secure a cap on the container, and shake vigorously until all of the mustard is dissolved in the water.

Let the solution sit for 24 h for maximum capsaicin extraction from the mustard. When the capsaicin extraction is complete, dilute the mustard solution with 4 L of water in an 8-L water carrier. Shake the mustard solution several times to mix, and transfer it into the water carrier. Rinse any residual mustard using the diluted solution.

Seal the water carrier cap, and ensure that the valve is in the “OFF” position. Invert the water carrier three times to mix evenly. Prepare one container of capsaicin solution for each testing site.

Proceed to the sampling site with a quadrat and the water carrier containing diluted mustard solution. Also bring three sampling cups per site. They should be labeled appropriately for three replicates per sampling site.

Place the quadrat randomly on the ground in a cleared spot. Clear away the brush, leaves, and mulch as much as possible to clearly expose the soil. Mix the dilute solution again, and then switch the cap valve to the ON position.

Pour approximately a third of the diluted mustard solution within the quadrat, concentrating the majority of the liquid at the center of the quadrat area. If the soil becomes saturated and forms pools, stop pouring, and wait until pooled solution infiltrates the soil before continuing.

Observe the quadrat area closely for 5 minutes, looking for earthworm appearance. Be sure to look directly under the sides of the quadrat.

Wait for all earthworms to emerge from the soil within the quadrat area, and then collect them with forceps. After 5 minutes, close the sample cup and proceed to the next sampling site.

Repeat the collection steps for all sampling sites. Return to each site and perform 3 replicates per site. Count the number of earthworms collected for each sample, and then calculate the mean and standard deviation for each collection site.

Create a bar graph to compare the average earthworm population densities between collection sites. Use the standard deviation to create the error bars. Site one is a managed park, and is therefore more hospitable to earthworm populations due to disturbances such as aeration and fertilizers. Site two is unmanaged, and is therefore less hospitable to earthworm populations.

Exotic earthworms and European buckthorn have been implicated as part of an “invasional meltdown” occurring, especially in the mid-western United States. Tracking earthworm populations can help to elucidate relationships between the two invasional species and enable researchers to develop methods to prevent further spreading.

You’ve just watched JoVE’s introduction to the extraction and analysis of earthworm populations. You should now understand the principles of earthworm extraction from soil, and the comparison between sampling sites. Thanks for watching!

Tags