资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 路易莎 Ikner
水质分析监测污染物、 营养物质、 病原体和可以影响水的诚信作为一种资源的任何其他成分的汇的人为因素。粪便污染造成威胁植物、 动物和人类健康与疾病或疾病的病原微生物。增加对水的需求和严格的质量标准要求进行低病原水平监控供水对人类或环境资源。然而,监测每个病原与粪便污染是不可行的由于实验室技术涉及广泛的劳动力、 时间和成本。因此,为指示生物检测提供了简单、 快速和成本有效监测技术,相关的卫生条件病原体。
指标是容易探测到生物的存在直接相关一个或更多的病原体污染环境。为了考虑适当的指标,有机体必须满足五个标准之后:
大多数指标是肠道微生物或病毒,通常存在于温血哺乳动物和鸟类胃肠道系统,给与粪便污染的直接连接。然而,很多指标可以缺乏由于与某些病原体相关性较差的有效性。两个最广泛接受的细菌指标生物大肠杆菌和大肠菌群由于其粪便的联系,并缓解在实验室分析。
Colilert 是同时检测、 特定识别和确认为水样中的总大肠菌群和大肠杆菌定义衬底技术 (DST) 方法。该实验室技术利用基质养分特定于每个指示生物的代谢途径,枚举只需的微生物,释放了一个信号,当细菌改变这种化合物。在大肠菌群,大肠菌群的 β-半乳糖苷酶酶法水解邻-硝基苯基-β-D-半乳糖苷 (ONPG) 营养。产品复合,邻硝基是色原释放一个颜色的信号,变水黄 (图 1)。
图 1。邻硝基苯基释放色彩信号,变水黄的示意图。
在大肠杆菌,甲基伞形酮-β-D-葡糖苷酸 (MUG) 养分被劈开的细菌的醛酸苷酶酶,产生荧光蓝绿在紫外光灯下 (图 2) 甲基伞形酮产品。
图 2。劈开的产荧光蓝绿在紫外光照射下的 methylumberlliferone 产品的细菌的醛酸苷酶酶甲基伞形酮-β-D-葡糖苷酸 (MUG) 养分的示意图。
Colilert 可以作为指示生物是否存在样本中存在缺乏 (P A) 测试执行。此测试完成到 100 毫升水样品溶解承印物上孵化在 35 ± 0.5 ° C 为 24h,并观察彩色信号。此外可以利用系统,它决定每个有机体的最可能数 (MPN) 量化指标的存在。此过程涉及到封入托盘、 载 49 大型井和 48 小井的 100 毫升水样品溶解承印物。托盘在 35 ± 0.5 ° C 为 24h,孕育产生,然后井包含积极的颜色变化算。大到小井包含积极的信号比提供的每个指示生物目前存在量化 MPN 图表对齐。美国饮用水规程要求零大肠菌群是目前在 100 毫升的饮水。
1.Colilert 存在 — — 没有 (P — — A) 测试
图 3。P A 检查为阴性 (左)、 大肠菌群阳性 (中间) 和大肠杆菌阳性 (右)。
2.Colilert MPN: 定量托盘 2000年
图 4。定量托盘负 (左)、 大肠菌群阳性 (中间) 和大肠杆菌阳性 (右)。
水质分析至关重要,保障水资源的完整性。与排泄物,可能含有致病病原体的存在相关指标微生物的存在。指示生物因此可以用于供水的安全性进行评价。
在水中的排泄物污染显著对健康构成危险的植物、 动物和人类,胃肠道病原体是棚在粪便中很高的数字。然而,监测水样为每种类型的独特与粪便污染是病原的不可行的。指示生物测量提供了简单、 快速和成本有效的方式来检测粪便污染水资源。
此视频将说明背后使用指示生物水质量进行评价的原则如何测试收集的海水样本和释义及由此产生的数据量化。
要用作水质量指标,有机体必须满足五个具体标准。首先,它应该是探测水中出席,并缺席当病原体是缺席病原在哪里。第二,指标有机体的数量必须符合病原体水平。它也应该变得更加艰难和坚持不再比病原体的环境中。最后,检测应容易、 安全和廉价,和有效跨所有水类型。
两个最常见的细菌指标组是总大肠菌群和粪大肠菌群,通常大肠杆菌。总大肠菌群可以发现在哺乳动物的肠道,但也可能自然出现在土壤和地表水。粪大肠菌群是完全在哺乳动物和鸟类胃肠道内驻留并不断流出粪便中的一个子集。大肠菌群很容易受到同样的压力,许多常见的肠道病原体,如水处理或营养水平较低,他们在水样中的存在是病原体的潜在存在的一个有用指示器。总大肠菌群和大肠杆菌随时检测实验室设置中。
对于检测,化学基质添加到大肠菌群代谢,导致颜色改变样品。对于总大肠菌群,添加的 ONPG 转换为硝基苯酚,水在变黄。为粪大肠菌群,大肠杆菌转换荧光蓝绿在紫外光下甲基伞形产品的杯子。在其最简单的应用程序中,衬底的测试可以确认存在大肠菌群存在在水中的采样时间。
与这种定性的方法,可以使用一个专门的分区的托盘估计总大肠菌群数的每个样品。溶解反应底物后,水样本是添加到包含大型和小型井栏,然后孵化。将计算井参展的颜色变化,和从小到大口井,展示积极的色度信号的比例对齐到指示的数量的图表。美国饮水供应必须包含零总大肠菌群每 100 毫升。
现在,我们都熟悉使用指示生物识别和量化水质污染的原则,让我们看看如何这在实验室中进行。
一旦已采集样本,将他们带入实验室进行测试。若要开始,请打开一个 100 毫升的塑料瓶。瓶子可能含有少量的粉状的硫代硫酸钠试剂,用于确保任何可能存在的氯的中立化。添加入瓶 100 毫升的水样本。打开一个枕头管含有养分的衬底和内容倒入瓶子里面的水样本。盖和密封瓶里,然后摇大力,反复反转瓶,直到完全溶解承印物。接下来,孵育样品试剂瓶在 35 ° C为 24 小时。
观察的黄色的颜色变化在样品试剂的混合物。黄颜色指示大肠菌群存在。没有颜色的变化表明,大肠菌群是缺席。最后,暴露在紫外线光的混合样品试剂和观察。蓝色的荧光,黄颜色的变化,结合表示大肠杆菌存在。无荧光指示缺勤。
最可能的数目或 MPN,也可以确定样品。打开一瓶,并添加 100 毫升的水样本。打开营养基质的枕头管和内容倒入瓶中的水样品。盖和密封瓶。摇大力,一再反转,直到完全溶解承印物。小心打开托盘通过挤压边缘顶部并拉回应用恒压保持托盘打开文件选项卡。样品试剂混合物倒入托盘和密封。孵育 24 h 35 ° C 的送纸器。
观察颜色改变样品试剂混合托盘中。数大水井和已经变黄,表明大肠菌群的存在的小井。下一步,公开对紫外线照射样品试剂托盘和观察蓝色荧光。计数信号的大肠杆菌阳性出现的大型和小型水井的数量。
使用提供的 MPN 表,量化每个指示生物目前在 100 毫升的水的浓度。发现小积极油井顶部的表的数量和左侧坐标轴上大积极水井的数量。两者的交集会给一个人物形象代表最可能数目,是每 100 毫升的有机体的估计的数量。
总大肠菌群和大肠杆菌检测测试用于检查各种水样品中的污染。
水是人类食用或饮用,定期进行测试的污染。为了使水被视为安全,它应该包含少于 1 大肠菌群每 100 毫升。在这里,水从水龙头被收集,和总大肠菌群或大肠杆菌污染,正如前面表明测试。结果已确定水源是否供安全食用。
常用的测试的另一个示例是经过处理的废水。水必须测试以确保它是安全的释放到环境或重新调整用途供人类使用。因为高污染水平,预计在治疗之前,未经处理的污水样品被稀释到 1: 100,000。这些样品然后遭到总大肠菌群和大肠杆菌检测试验和 MPN 值计算。处理后的安全值应该是零细菌检测指标。
你刚看了朱庇特的简介测试水质使用指示生物。现在,您应该了解如何测试水样大肠杆菌和其他大肠菌群和如何量化目前的污染程度。谢谢观赏 !
指示生物来快速而轻松地确定环境污染。Colilert 检测方法用于分析水质饮用水,娱乐,和废水来源。水质量必须满足由环境保护署 (EPA) 和国家监管部门设置被承认为对人类和 (或) 环境的消费资源的法律标准。
Colilert 检测战略上被用作质量平衡标记内环境的研究,并且可以和其他环境的检测方法,测量结果的相关性分析此数据。执行简单 P-A Colilert 测试说明是否样品被污染了,可以一起研究结果进行了分析。如果 P A 样本表明,在水中的污染,正在利用研究也可能导致的污染的水样品可曲解结果,,虽然 MPN 定量托盘提供污染目前基线量化。例如,指示生物可以用于关联指标量化与病原体水样品中发现的数量。如果定量托盘枚举指标低数字,这表明水样本也须经验与低病原水平相似的趋势。
Water quality analysis is vital to safeguard the integrity of water resources. The presence of indicator microorganisms is correlated with the presence of fecal matter, which may contain disease-causing pathogens. Indicator organisms can therefore be used to evaluate the safety of water supplies.
Fecal contamination in water poses a significant risk to the health of plants, animals, and humans, as gastrointestinal pathogens are shed in very high numbers in the feces. However, monitoring water samples for each type of unique pathogen associated with fecal pollution is not feasible. Surveying for Indicator organisms provides a simple, rapid, and cost effective way to detect fecal contamination in water resources.
This video will illustrate the principles behind using indicator organisms to evaluate water quality, how to test collected water samples, and the interpretation and quantification of resulting data.
To be used as a water quality indicator, organisms must meet five specific criteria. First, it should be detectable in water where the pathogen is present, and absent when the pathogen is absent. Second, the number of indicator organisms must correspond with pathogen levels. It should also be tougher and persist longer in the environment than the pathogen. Finally, detection should be easy, safe, and inexpensive, and effective across all water types.
Two of the most common bacterial indicator groups are total coliforms and fecal coliforms, typically E. coli. Total coliforms can be found in the mammalian gut, but may also occur naturally in soil and surface water. Fecal coliforms are a subset that reside entirely within the gastrointestinal tracts of mammals and birds and are continuously shed in feces. Coliforms are vulnerable to the same stresses as many common gut pathogens, such as water treatment or low nutrient levels, their presence in a water sample is a useful indicator of the potential presence of pathogens. Both total coliforms and E. coli are readily detected in the laboratory setting.
For detection, chemical substrates are added to the sample that the coliforms metabolize, resulting in a color change. For total coliforms, added ONPG is converted to nitrophenol, turning the water yellow. For fecal coliforms, E. coli converts MUG to a methyl-umbelliferone product that fluoresces blue-green under ultraviolet light. In its simplest application, the substrate test can confirm the presence or absence of coliforms existing in the water at the time of sampling.
In contrast to this qualitative method, the number of total coliforms per sample can be estimated using a specialized partitioned tray. After the reactive substrate is dissolved, the water sample is added to a tray containing large and small wells, and then incubated. Wells exhibiting the color change are counted, and the ratio of small to large wells demonstrating positive colorimetric signals is aligned to a chart that indicates a quantity. US drinking water supplies must contain zero total coliforms per 100 mL.
Now that we are familiar with the principles of using indicator organisms to identify and quantify water contamination, let’s take a look at how this is carried out in the laboratory.
Once samples have been collected, bring them into the laboratory for testing. To begin, open a 100-mL plastic bottle. Bottles may contain a small amount of powdered sodium thiosulfate reagent that is used to ensure the neutralization of any chlorine that might be present. Add 100 mL of water sample into the bottle. Open a pillow tube containing nutrient substrate and pour the contents into the water sample inside the bottle. Cap and seal the bottle, then shake vigorously, repeatedly inverting the bottle until the substrate is completely dissolved. Next, incubate the sample-reagent bottle at 35 °C for 24 h.
Observe the yellow color change in the sample-reagent mixture. Yellow color indicates that coliforms are present. No change in color indicates that coliforms are absent. Finally, expose the sample-reagent mixture to ultraviolet light and observe. Blue fluorescence, in combination with a yellow color change, indicates that E. coli is present. No fluorescence indicates absence.
Most Probable Number, or MPN, can also be determined for samples. Open a bottle, and add 100 mL of water sample. Open the pillow tube of nutrient substrate and pour the contents into the water sample in the bottle. Cap and seal the bottle. Shake vigorously, inverting repeatedly until the substrate is completely dissolved. Carefully open the tray by squeezing the edges at the top and pull back the paper tab. Apply constant pressure to keep the tray open. Pour the sample-reagent mixture into the tray and seal. Incubate the tray at 35 °C for 24 h.
Observe the color change in the sample-reagent mix tray. Count the number of large wells and small wells that have turned yellow to indicate the presence of coliforms. Next, expose the sample-reagent tray to ultraviolet light and observe blue fluorescence. Count the number of large and small wells that signal positive presence of E. coli.
Using the provided MPN sheet, quantify the concentration for each indicator organism present in 100 mL of water. Find the number of small positive wells along the top of the table, and the number of large positive wells on the left side axis. The intersection of the two will give a figure representing the Most Probable Number, which is the estimated number of organisms per 100 mL.
Total coliform and E. coli detection tests are used to check for contamination in a variety of water samples.
Water that is meant for human consumption, or potable, is routinely tested for contamination. In order for water to be deemed safe, it should contain fewer than 1 coliform per 100 mL. Here, water from a tap was collected, and tested for total coliform or E. coli contamination, as previously demonstrated. The results determined if a water source was safe for consumption.
Another sample commonly tested is treated wastewater. The water must be tested to ensure it is safe for release into the environment or repurposing for human use. As high levels of contamination were expected prior to treatment, the raw sewage sample was diluted to 1:100,000. These samples were then subjected to total coliform and E. coli detection tests, and MPN values calculated. The safe value after processing should be zero detectable indicator bacteria.
You’ve just watched JoVE’s introduction to testing water quality using indicator organisms. You should now understand how to test water samples for E. coli and other coliforms, and how to quantify the degree of contamination present. Thanks for watching!
Related Videos
Environmental Microbiology
358.8K 浏览
Environmental Microbiology
126.2K 浏览
Environmental Microbiology
99.9K 浏览
Environmental Microbiology
42.1K 浏览
Environmental Microbiology
57.1K 浏览
Environmental Microbiology
28.8K 浏览
Environmental Microbiology
44.5K 浏览
Environmental Microbiology
40.3K 浏览
Environmental Microbiology
47.8K 浏览
Environmental Microbiology
29.4K 浏览
Environmental Microbiology
39.2K 浏览
Environmental Microbiology
40.6K 浏览
Environmental Microbiology
183.7K 浏览
Environmental Microbiology
295.5K 浏览
Environmental Microbiology
13.7K 浏览