资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 路易莎 Ikner
无菌技术是广泛应用在需要平衡的正念与实践在实验室的环境微生物学领域的基本技巧。正确使用这种技术减少了试剂、 文化传媒和环境样品的细菌或真菌污染的可能性。无菌技术,还必须确保数据的完整性和保持纯洁的可能组成的非常罕见,而且困难到文化分离的文化图书馆。实验室环境中的污染来源包括空气中的微生物 (包括那些秉承尘,棉絮到处粒子),微生物目前关于实验室工作台工作区或未经消毒的玻璃器皿和设备,和微生物转移从身体和头发的研究员。无菌技术的应用也是降低微生物研究人员,对传输的潜力,是特别重要的当工作与病原体的安全措施。
使用无菌技术的目标是创建和维护一个无菌的工作环境、 设备和试剂,以尽量减少污染的生物样品。要做到这一点,工作空间和一些工具,可以用 70%乙醇等化学品进行消毒和稀释漂白水。它也是重要的研究员等实验室工作服,手套,穿个人防护装备 (PPE) 和安全护目镜。
使用筛选器灭菌装置采用 0.22 微米过滤器,有效去除大多数的微生物如细菌可以灭菌媒体和试剂。另外,很多试剂和设备可也消毒的高热量。例如,微生物上或在工具、 玻璃器皿、 和液体介质可以被热死在一个高压釜,是消毒内容通过暴露于高温加压蒸汽室。此外,一些工具可以高温消毒使用火焰源,如本生灯。
使用火焰源也是建立无菌工作环境的最常见途径之一。从火焰热导致空气对流,生成升降机任何空气污染物的燃烧器,附近地区的上升气流和创建”无菌字段”,用来进行无菌试验工作。
1.无菌工作的准备
2.细菌转移: 从到培养皿培养皿
3.细菌转移: 从肉汤文化到培养皿
4.细菌转移: 从增长到无菌的液体培养基培养皿
5.细菌转移: 从肉汤文化到无菌液体培养基
无菌技术是在微生物学的基本技巧和在环境研究中具有关键应用程序。
如果微生物的文化被污染,时间、 劳动,将需要的实验室到”清理”或替换菌株独特的环境,文化,尤其是罕见的财政成本可能很高,让人望而却步,和一些样品可能成为不可替代的。
正确使用的无菌技术减少了试剂、 文化传媒和环境样品的细菌和真菌污染的可能性,也避免了交叉污染样本之间。它也是一项安全措施,减少潜在传播微生物对实验者,这是尤其重要的当工作与病原体。
这个视频将介绍的原则无菌;几个重要的技术,以保持无菌试剂和文化;而且最后,一些在环境科学中的应用。
使用无菌技术的目标是创建和维护一个无菌的工作环境、 设备和试剂,以尽量减少污染的生物样品。常见的污染来源包括空气中的微生物,微生物目前在实验室的长凳上或设备,那些从头发、 身体和研究者的服装。
两种类型的代理是消除或防止污染在实验室的核心: 消毒剂和热。70%的乙醇和稀释漂白水等解决方案通常用于消毒设备,工作表面和实验师手套才能从事无菌工作。
同时,微生物上或在工具、 玻璃器皿、 和液体介质可以被热死在一个高压釜,是消毒内容通过暴露于高温加压蒸汽室。此外,用于玻璃棒等工具传播电镀和金属接种环可以高温消毒使用火焰源,如本生灯。
使用火焰源也是建立无菌工作环境的最常见途径之一。从火焰热导致空气对流,生成升降机任何空气污染物的燃烧器,附近地区的上升气流和创建”无菌字段”,用来进行无菌试验工作。
现在,您了解背后无菌技术和为什么他们是重要的原则,通过协议,用于创建一个无菌的工作环境,弥补无菌生长介质,和无菌转移细菌之间不同的培养条件吧。
在开始之前无菌工作,它是重要的实验者,不适当的个人防护装备或 PPE。这样做的目的是防止污染的样品和实验室文化中,实验者,又要防止潜在致病性微生物的传送到研究员。个人防护装备项目包括实验室外套、 手套和护目镜。
下一步是正确消毒和存储增长媒体用于培养的微生物样品。首先,称出适量的固体培养基的成分,并将它们添加到适当的液体溶剂由制造商指定的如去离子的水中,在高压蒸汽灭菌容器添加一个磁力搅拌酒吧,该容器放在热板搅拌器,和溶解固体培养基组成与低热和搅拌体积。
关闭介质容器。如果使用螺钉上盖的玻璃容器,一定要不拧紧瓶盖完全,容器内的空气将会扩大,由于加热期间压力蒸汽灭菌以及需要逃避。没有出路,气体可能会导致血管破裂。穿一块高压釜磁带上的船只和高压釜媒体按照制造商的说明,如 20 分钟在 121 ° c。后压力蒸汽灭菌,验证高压釜磁带上的条纹就变成了黑色,指示达到适当的温度。
为液体培养基,晾凉至室温,并将它们存储在室温或酌情制冷。对于基于琼脂固体培养基晾凉至约 50 ° C,然后倒入无菌培养皿。允许琼脂冷却和固化之前存储在适当的温度。
不能蒸压热敏感元件存在的媒体,为筛选器消毒使用 0.22 微米的筛选器。
在微生物工作的核心技术是无菌不同的生长介质,固体和液体之间传输的细菌培养。在开始的时候之前, 清洁实验室工作台表面用消毒剂。这降低了污染文化或不育的媒体的风险。
转移的细菌培养使常用的一种称为接种的循环,需要使用中的火焰加热灭菌的前工具。
打开火焰源。慢慢地通过接种环路通过火焰的提示。热循环将变成红色。要转移固体琼脂平板菌落,略,打开培养皿,轻轻点击拖到琼脂表面,以避免热杀细菌空部分热的接种环。刮一单菌落接种环,并关闭板。
以细菌转移液体培养基,从文化容器中移除帽。为了防止污染,避免落帽放在长凳。通过 2-3 次通过火焰的热门部分容器的口。然后,仔细触摸到容器内部的热,灭菌接种环和插入肉汤文化之前让它冷却。删除一个染剂的文化,并立即关闭 cap。
将获得的细菌转移到无菌的培养基,从无菌发酵液的容器中删除帽和通过容器的开放通过火焰 2-3 倍。仔细地降低接种环到介质中,然后,轻轻地搅动,释放细菌。立即关闭 cap。使用后消毒接种环。
如果转移到无菌的琼脂平板上的细菌,细胞壁琼脂与打开新鲜的培养皿的盖子。接种环与细菌培养一个部门的琼脂四连胜。消毒循环和酷它通过触摸琼脂,空部分然后向琼脂上的另一种条纹钝角第一缕,并确保第一缕上第一次 1-2 笔画马路,但应避免接触随后笔画上的第一缕。重复灭菌和裸奔 2 次以上。关闭培养皿,和消毒接种环。
然后,应在给定的微生物,以获得可行的文化的理想生长温度孵化一旦接种,肉汤或琼脂板。在固体培养基上草坪或连续串的细菌会在前两个条纹,所涵盖的琼脂上可见但个别殖民地应该得到最后连胜。可怜的无菌技术将导致模具和其他污染物在盘子上的增长。
无菌技术是重要的多项实验涉及从环境的微生物样品。在此研究中,研究人员分离出噬菌体,这是细菌感染病毒,从普通的土壤细菌节杆菌。节杆菌文化第一次在无菌条件下生长。土壤样品,然后洗和筛选噬菌体缓冲区中和噬菌体溶液是混合与细菌培养和镀到琼脂板上。细菌的草坪将形成在盘子里,但会有空地或”斑块”,地点在哪里病毒已经感染,杀死细菌。然后可以从这些斑块为进一步研究提纯噬菌体。
使用本生灯燃烧器,无菌工作环境还可以在专门的工作站称为层流罩,使用定向气流和筛选器,以保持无菌状态保持。在这里,科学家从事工作流引擎罩隔离潜在致病性细菌和病毒从水样。这些菌株细胞再与阿米巴。因为阿米巴通常吃或”吞噬”细菌,任何能够抵抗 amoebal 消化并留在这些生物体的细菌也有可能在人类细胞保持活力并引起疾病。
最后,无菌条件允许详细的研究生态机制,如豆科植物根瘤的形成植物-“修复”大气中的氮转化为氨,用于由植物生长的细菌填装的器官。研究人员在这里创建”微观世界”研究结瘤过程与植物生长介质,使用缺口的 Petri 板放入他们的幼苗和接种根瘤菌结瘤苗。流罩的无菌环境防止污染的文化与其他细菌或真菌。
你刚看了朱庇特的视频在环境科学中的无菌技术。你现在应该明白为什么无菌工作条件很重要;如何无菌进行微生物实验;和在环境研究中无菌技术的应用。一如既往,感谢您收看 !
程序的结果演示正确的无菌技术和可怜的无菌技术。图 7说明了污染时浇筑琼脂糖凝胶板可以出现从可怜的无菌技术 (板块排名: 无菌培养基; 底板: 污染介质)。
图 7: 污染时浇筑琼脂糖凝胶板可以出现从可怜的无菌技术。板块排名: 无菌培养基;底板块: 污染介质。
使用本生灯燃烧器,无菌工作环境还可以在专门的工作站称为层流罩,使用定向气流和筛选器,以保持无菌状态保持。
无菌技术的正确使用对环境微生物学家至关重要,当采样在外地和在实验室中,当工作与媒体,试剂,和培养菌株。 可怜无菌技术在领域可以导致微生物从技术员到关键的环境样品,转移以及交叉污染的微生物从一个样本到另一个。这类事件是重要性的,例如,设法查明和比较给定生物群落中可能存在的细菌和真菌种群的微生物生态学研究中。这种样品污染可能导致丢失数据的完整性。无菌技术,对于实验室文化分离株原产从现场取样或既定的微生物和细胞文化资料库维护至关重要。时间、 劳动,将需要的实验室在努力”清理”或更换污染的文化,特别是罕见的财务费用从独特的环境隔离,可能极高,让人望而却步,因为一些菌株可能成为不可替代的。
Aseptic technique is a fundamental skill in microbiology, and has crucial applications in environmental research.
If microbiological cultures are contaminated, the time, labor, and financial costs that would be required of a lab to “clean up” or replace the cultures, particularly rare isolates from unique environments, could be very high and prohibitive, and some samples may be irreplaceable.
Proper use of aseptic techniques reduces the likelihood of bacterial and fungal contamination of reagents, culture media, and environmental samples, and also avoids cross-contamination between samples. It is also a safety measure that diminishes the potential transmission of microbes to the experimenter, which is especially important when working with pathogens.
This video will introduce the principles of asepsis; several important techniques to maintain sterile reagents and cultures; and finally, some of their uses in environmental science.
The goal of using aseptic techniques is to create and maintain a sterile working environment, equipment, and reagents, so as to minimize contamination of biological samples. Common sources of contamination include airborne microorganisms, microbes present on the laboratory bench or equipment, and those from the hair, body, and clothing of the researcher.
Two types of agents are central to removing or preventing contamination in the laboratory: disinfectant chemicals and heat. Solutions such as 70% ethanol and dilute bleach are often used to disinfect equipment, working surfaces, and experimenters’ gloves before engaging in aseptic work.
At the same time, microbes on or in tools, glassware, and liquid media can be heat-killed in an autoclave, which is a chamber that sterilizes contents via exposure to high-temperature pressurized steam. In addition, tools such as glass rods used for spread plating and metal inoculation loops can be heat-sterilized using a flame source, such as a Bunsen burner.
The use of a flame source is also one of the most common ways to establish an aseptic working environment. The heat from the flame causes air convection, generating an updraft that lifts any airborne contaminants away from the vicinity of the burner, and creating a “sterile field” in which to conduct aseptic experimental work.
Now that you understand the principles behind aseptic techniques and why they are important, let’s go through a protocol for creating an aseptic working environment, making up sterile growth media, and aseptically transferring bacteria between different culturing conditions.
Before beginning aseptic work, it is important for the experimenter to don proper personal protective equipment, or PPE. The purpose of this is both to prevent the experimenter from contaminating the samples and lab cultures, and also to prevent the transfer of potentially pathogenic microbes to the researcher. PPE items include a lab coat, gloves, and safety goggles.
The next step is to properly sterilize and store the growth media to be used for culturing the microbial samples. First, weigh out the proper amount of solid medium components, and add them to the proper volume of liquid solvent specified by the manufacturer, such as deionized water, in an autoclavable container Add a magnetic stir bar, place the container on a hot plate stirrer, and dissolve the solid medium components with low heat and stirring.
Close the medium containers. If using a glass vessel with screw-on cap, be sure to not tighten the cap completely, as the air inside the vessels will expand due to heating during autoclaving and needs to escape. Without escape, the gas could cause the vessel to rupture. Put a piece of autoclave tape on the vessels, and autoclave the media according to the manufacturer’s instructions, such as 20 min at 121 °C. After autoclaving, verify that the stripes on the autoclave tapes turned black, indicating the proper temperature was reached.
For liquid growth media, let them cool to room temperature, and store them at room temperature or with refrigeration as appropriate. For agar-based solid growth media, let them cool to approximately 50 °C, then pour into sterile Petri dishes. Allow the agar to cool and solidify before storing at the appropriate temperature.
For media that cannot be autoclaved due to the presence of heat-sensitive components, filter sterilize using a 0.22-μm filter.
A core technique in microbiological work is to aseptically transfer bacterial cultures between different growth media, both solid and liquid. Prior to beginning, clean the lab bench surface with a disinfectant. This lowers the risk of contaminating cultures or sterile media.
Transferring bacterial cultures commonly makes use of a tool called an inoculating loop, which needs to be sterilized prior to use by heating in a flame.
Turn on a flame source. Slowly pass the inoculating loop through the tip of the flame. The loop will turn red hot. To transfer a bacterial colony from a solid agar plate, open the Petri plate slightly, and gently tap the hot inoculating loop onto an empty part of the agar surface to avoid heat-killing the bacteria. Scrape a single colony with the inoculating loop, and close the plate.
To transfer bacteria from a liquid growth medium, remove the cap from the culture container. To help prevent contamination, avoiding setting the cap down onto the bench. Pass the mouth of the container 2-3 times through the hottest portion of the flame. Then, carefully touch the hot, sterilized inoculation loop onto the inside of the container and let it cool before inserting it into the broth culture. Remove one loopful of the culture, and immediately close the cap.
For transferring the obtained bacteria to a sterile growth medium, remove the cap from a container with the sterile broth and pass the container’s opening through the flame 2-3 times. Then, carefully lower the inoculation loop into the medium, and agitate gently to release the bacteria. Immediately close the cap. Sterilize the inoculation loop after use.
If transferring bacteria onto a sterile agar plate, open the lid of a fresh Petri plate with uninoculated agar. Streak the inoculation loop with the bacterial culture back-and-forth across one sector of the agar. Sterilize the loop and cool it by touching an empty part of the agar, then make another streak on the agar at an obtuse angle to the first streak, making sure to cross the first streak on the first 1-2 strokes but avoid touching the first streak on subsequent strokes. Repeat the sterilization and streaking 2 more times. Close the Petri plate, and sterilize the inoculation loop.
Once inoculated, the broth or agar plate should then be incubated at the ideal growth temperature for the given microorganism to obtain viable culture. On solid medium, a lawn or continuous strand of bacteria would be visible on agar covered by the first two streaks, but individual colonies should be obtained on the final streak. Poor aseptic techniques would result in the growth of mold and other contaminants on the plate.
Aseptic techniques are important in many experiments involving microbial samples from the environment. In this study, researchers isolated bacteriophages, which are bacteria-infecting viruses, from the common soil bacterium Arthrobacter. Arthrobacter cultures were first grown under aseptic conditions. Soil samples were then washed and filtered in phage buffer, and the phage solution was mixed with the bacterial culture and plated onto agar plates. A bacterial lawn would form on the plate, but there would be clearings, or “plaques”, at spots where the virus had infected and killed the bacteria. Phage could then be purified from these plaques for further study.
Other than using Bunsen burners, aseptic working environments can also be maintained in specialized workstations known as laminar flow hoods, which use directed airflow and filters to maintain sterility. Here, scientists worked in a flow hood to isolate potential pathogenic bacteria and viruses from water samples. These isolates were then cultured together with amoebae. Because amoebae normally eat or “phagocytose” bacteria, any bacteria that were able to resist amoebal digestion and remain in these organisms can also potentially remain viable in human cells and cause diseases.
Finally, sterile conditions permit detailed study of ecological mechanisms such as the formation of root nodules in legume plants – bacteria-filled organs that “fix” atmospheric nitrogen into ammonia, which is used by the plant for growth. Researchers here created “microcosms” for studying the nodulation process using notched Petri plates with plant growth medium, placed seedlings into them and inoculated the seedlings with nodule-forming rhizobial bacteria. The aseptic environment of the flow hood prevents contamination of the cultures with other bacteria or fungi.
You’ve just watched JoVE’s video on aseptic techniques in environmental science. You should now understand why aseptic working conditions are important; how to aseptically perform microbiological experiments; and some applications of aseptic techniques to environmental research. As always, thanks for watching!
Related Videos
Environmental Microbiology
359.5K 浏览
Environmental Microbiology
126.5K 浏览
Environmental Microbiology
100.3K 浏览
Environmental Microbiology
42.3K 浏览
Environmental Microbiology
57.3K 浏览
Environmental Microbiology
28.8K 浏览
Environmental Microbiology
44.6K 浏览
Environmental Microbiology
40.4K 浏览
Environmental Microbiology
47.8K 浏览
Environmental Microbiology
29.5K 浏览
Environmental Microbiology
39.3K 浏览
Environmental Microbiology
40.8K 浏览
Environmental Microbiology
184.5K 浏览
Environmental Microbiology
296.1K 浏览
Environmental Microbiology
13.8K 浏览