资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 布拉德利施密茨
聚合酶链反应 (PCR) 是一种用于检测存在于土壤、 水和大气环境中的微生物技术。通过放大 DNA 的特定部分,PCR 可以方便的检测和识别目标微生物物种、 应变,和钩/变种水平。这项技术也可以用于表征整个社区的样品中微生物。
培养微生物在实验室里用专门的生长介质是成立已久的技术,仍在使用的环境样品中微生物检测。许多微生物在自然的环境中,而活着,保持低水平的代谢活动和 (或) 倍增时间和因而提到作为可行但是非可培养 (VBNC) 有机体。使用单独的基于文化的技术无法检测到这些微生物和,因此,不提供样品中微生物种群彻底的评估。Pcr 技术的使用允许的可培养微生物,VBNC 生物检测和那些不再活着或活动,如扩增的基因序列一般不需要进行微生物的预富集环境样品中。然而,PCR 不能区分上述国家的生存能力和活动。当与一个或多个基于文化的技术相结合,可能仍然确定的某些子集的微生物生存能力。
Pcr 技术的基本前提是使用连续温度变化周期重复实现指数扩增的 DNA。从细菌生活在温泉等研究者(Taq) 获得的 DNA 聚合酶进行 DNA 合成。这些聚合酶的热稳定性,使它们能承受高温在 PCR 过程中使用。
目标序列,称为扩增子,是从使用两个短绵延的核苷酸称为”引”的 DNA 模板扩增。由于互补核酸结合的高度特异性,引物允许非常特定序列的感兴趣的有针对性地放大。通过设计引物,将只吸收增强有机体的兴趣的一个独特的序列 (或唯一的序列组合),PCR 可以用于差异检测该有机物的 DNA 之间复杂的环境样品中的所有基因材料的存在。
若要执行聚合酶链反应,称为热循环仪机器用来自动循环所需的反应了不同温度。每个周期分为三个阶段。第一,素有”变性”,通常设置为高于 92 ° C,持续约 30 美国变性用于 DNA 分子分成单股,以允许进行扩增反应。
第二阶段,”退火”,下面的两个引物,通常在 50-65 ° C,和也持续约 30 美国熔点温度是的温度,50%的双链 DNA 有分隔成单股和退火步骤可以使引物将绑定到其目标站点中 DNA 模板之间的熔化温度较低设置 2-3 ° C。
聚合酶链反应周期的第三阶段是”伸长”或”扩展”,当 DNA 聚合酶将绑定到引物-模板工和催化合成的产品。设置在 Taq 聚合酶 72 ° C,这一阶段的持续时间取决于长度的扩增子,通常 30 s / 500 bp。每个循环后扩增的 DNA 再次变性,并作为一个新的模板,导致 PCR 产物的指数增加。
反应完成后,可通过”凝胶”通常由聚合物琼脂糖,该过程称为电泳上大小解决 PCR 产物。在凝胶,施加电场和 DNA 分子的骨干负电荷使他们迁移领域积极年底。一般来说,较大的线性 DNA 分子需要较长时间穿越凝胶基质。
1.样品采集
2.核酸提取及制备
3.聚合酶链反应
4.琼脂糖凝胶制备
5.凝胶电泳
组件 | 每管卷 (μ L) | 5 管卷 (μ L) | 最终浓度 |
10 倍于 Ex Taq缓冲区 | 5.0 | 25 | 1 x |
2.5 毫米 dNTPs | 4.0 | 20 | 0.2 m m |
向前的底漆 * | 2.0 | 10 | 400 毫微米 |
反向引物 * | 2.0 | 10 | 400 毫微米 |
分子的 H2O | 31.75 | 158.75 | – |
Taq ex | 0.25 | 1.25 | 2.5 U |
聚合酶链反应混合物 | 45 | 225 |
表 1。聚合酶链反应试剂卷掌握混合。* 底漆卷异生物测定。调整音量的分子级水,使最后一卷 45 μ L。卷的其他组件应该不会发生变化。
推荐的 %的琼脂糖 | 最佳分辨率,线性 DNA 片段 (碱基对) |
0.5 | 1,000-30,000 |
0.7 | 800-12,000 |
1.0 | 500 10,000 |
1.2 | 400-7,000 |
1.5 | 200-3,000 |
2.0 | 50-2,00 |
表 2。DNA 片段大小范围由不同的琼脂糖凝胶百分比以最佳方式解决。
聚合酶链反应或 PCR,是基本的生物技术,广泛应用于探测与识别微生物存在于土壤、 水和其他环境样品。
经典,微生物是在实验室使用专门的培养基中培养。然而,许多微生物在自然环境中的是”非可培养”— — 因为他们有代谢活性很低或增长率,或者因为他们有可能在培养皿中无法复制的非常严谨的增长要求。绦虫在微生物间的差异也意味着,当从环境样品微生物培养的时候,他们相对充裕的文化可能不反映其在环境中的实际水平。
聚合酶链反应,可以专门放大甚至少量的 DNA 混合样本中存在,使它得以快速检测和识别特定的兴趣,甚至那些非可培养,在各种复杂的有机体的环境样品中微生物。
这个视频将介绍聚合酶链反应的原理。然后,它将讨论一般协议进行 PCR 的 DNA 分离环境样品检测的有机体的利益存在。最后,将探索基于 PCR 的微生物鉴定的几种应用。
Pcr 技术的基本前提是使用循环的序贯温度变化来实现指数扩增的 DNA,通常称为热循环仪,以自动在不同温度下循环机。从细菌生活在温泉,如研究者或”Taq”获得的 DNA 聚合酶进行 DNA 合成。这些聚合酶的热稳定性,使它们能承受高温在 PCR 过程中使用。
目标序列,称为扩增子,是从使用两个短绵延的核苷酸称为”引”的 DNA 模板扩增。由于互补核酸结合的高度特异性,引物允许非常特定序列的感兴趣的有针对性地放大。通过设计引物,只会放大一个唯一的序列或独特的序列,从有机体的兴趣,PCR 可以用于差异检测该有机物的 DNA 之间复杂的环境样品中的所有基因材料的存在。
每个 PCR 周期分为三个阶段。第一,素有”变性”,通常设置为高于 92 ° C,持续约 30 美国变性用于 DNA 分子分成单股,以允许进行扩增反应。
第二阶段,”退火”,设置 2 到 3 ° C 以下的两个引物的熔点较低,通常 50 到 65 ° C 之间,和也持续约 30 美国熔点温度是在其中 50%的双链 DNA 分子有分隔成单股的温度和退火步骤可以使引物将绑定到其目标站点中的 DNA 模板。
聚合酶链反应周期的第三阶段是”伸长”或”扩展”,当 DNA 聚合酶将绑定到引物-模板工和催化合成的新股。设置在 72 ° C 为最常用的聚合酶链反应聚合酶,Taq,这一阶段的持续时间取决于长度的扩增子,通常 30 s 每 500 碱基。每个循环后扩增的 DNA 再次变性,并作为一个新的模板,导致 PCR 产物的指数增加。
反应完成后,可通过”凝胶”通常由聚合物琼脂糖,该过程称为电泳上大小解决 PCR 产物。在凝胶,施加电场和 DNA 分子的骨干负电荷使他们迁移领域积极年底。一般来说,较大的线性 DNA 分子需要较长时间穿越凝胶基质。
现在,您了解 pcr 技术的工作原理,让我们看看如何反应可以用于识别环境样品中的微生物。
若要开始,计算每个所需的试剂量基于数样品处理,加上额外的 10%,占移液的错误。阳性对照模板-其中包含目标区域-应包括以确保反应工作;以及一个消极控制没有 DNA 模板是包括在内,以排除任何反应组分中的污染。保持 Taq 聚合酶在冰上的和解冻其余的试剂和 DNA 样品在室温下在指定的层流罩,以防止污染。
一旦所有的试剂有解冻,构成试剂”主组合”计算每个试剂的量加入低绑定离心管,最小化到管表面分子由于吸附试剂量的差异。轻轻地涡和离心机在添加之前的每个试剂。一旦主人混合被编写,涡混合,通过离心收集。
标签指定为每个样品,包括控件的一个管 8 管 PCR 地带。取适量的 PCR 主掺入每个管的地带。然后,将每个 DNA 样本添加到各自的管。
盖带安全上带管,并且在与带适配器的迷你离心机短暂离心。然后,将导管放入热循环仪,并运行相应的 PCR 程序根据反应。
应用 pcr 技术正在运行时,准备的 PCR 产物电泳琼脂糖凝胶。称出适量的凝胶可以解决基于他们预期大小的 PCR 产物浓度的琼脂糖粉。琼脂糖加入 125 毫升瓶,然后加适当体积的凝胶运行缓冲区进瓶,基于铸,凝胶的体积和旋流混合。微波在 1 分钟的高功率琼脂溶液。完成后,验证琼脂糖完全溶解由旋转烧瓶,并重复微波 30-s 增量,如有必要。
紧紧地安全上瓶帽和把琼脂糖溶液冷却到 50 ° C 由旋流在流动的冷水下烧瓶。一旦冷却,加入琼脂糖 1 μ L 的溴化乙锭。因为溴化乙锭是潜在的致癌物质,一定要戴护目镜,大褂和溴化乙锭溴化耐手套等个人防护装备。
琼脂溶液倒入电泳凝胶注模成型托盘,确保没有气泡被困在琼脂糖。将所需数量的井用一把梳子放入解决方案。离开这种凝胶在室温为 20 到 30 分钟来巩固。一旦设置了这种凝胶,小心拔出梳子,确保不是来撕毁凝胶过程中。
将凝固的凝胶放入电泳室。LB 缓冲区添加进了舱室,直到凝胶只是淹没。在一块石蜡,吸管”现货”的 DNA 阶梯的 PCR 产物的预期大小适当的范围。从热循环仪检索完成反应的 PCR 管。经短暂离心,收集 PCR 管凝析油和添加的每个样品上石蜡 8 μ L。添加 2 μ L 的 10 x 加载到每个点的 PCR 产物的染料,以便最终浓度的染料是 2 x。
装入了指定的井,在琼脂糖凝胶,小心不要戳通过凝胶样品和梯子。一旦加载完毕,盖上盖子向电泳分庭,并将电极连接到电源。由于 DNA 负电荷,向正极迁移,请确保井一边的接近,到负电极。打开电源,并将它设置为一个电压适当大小的电泳室和正在使用的缓冲系统。设置电泳”运行”。小气泡室两侧向上移动将会观察到是否电泳正确进行。
一旦染料前面已足够先进下凝胶,关闭电源。仔细地运输到凝胶成像仪可视化 electrophoresed 的产品凝胶。具有保护罩,打开紫外线光和可视化在凝胶上的 DNA 条带。分析乐队来看看它是否匹配预期的模式,指示环境样品中感兴趣的物种的存在的位置。
现在,您已看到 PCR 如何进行的让我们看看它应用的各种方式来检测微生物对环境的关注。
以 PCR 为基础的环境微生物检测的用途之一是找出引起疾病的生物,如”大脑吃虫” Naegleria fowleri,单细胞有机体,发现在新鲜水机构,可以攻击人类的中枢神经系统,常常是致命的氯化处理的池。这要么水样中的致命细菌的存在或疑似病人脑脊液可以通过执行使用目标在阿米巴变形虫的基因组中独特的 DNA 序列的引物的 PCR 测试。
另一个应用程序的基于 PCR 的微生物鉴定是来测试作为公共卫生监测和疾病爆发调查的一部分附近食肆,被捕的苍蝇致病性细菌的存在。
在这里,调查人员由首先隔离从体表和消化道的苍蝇,细菌,然后使用物种特异性的培养条件对这些感兴趣的物种丰富寻找致病细菌如沙门氏菌和李斯特菌的存在。后从任何被培养的细菌中提取 DNA,商业上可用的种属特异性检测 PCR 试剂盒用来测试他们的身份。
最后,不同菌株的抗生素耐药致病性细菌如金黄色葡萄球菌、 目前主要的公共卫生问题,可以确定和区分与聚合酶链反应。
在此示例中,研究人员分离和培养金黄色葡萄球菌从临床标本,然后从细菌菌落中提取 DNA 并执行 PCR。这里的扩增反应了”多路复用”,意思针对不同的独特地区的细菌基因组的多个引物集被合并成相同的反应。个别底漆套被设计,以便 PCR 产物引起的不是别人,但只有一些菌株的 DNA,为每一株观察了组合,独特的产品带模式。
你刚看了朱庇特的视频基于 PCR 的微生物检测。我们已经看过聚合酶链反应; 背后的原则一种用于对环境微生物; 从中提取 DNA 进行 PCR 协议和最后,几个具体应用这种技术来测试生物的不同类型的环境或临床样品感兴趣。谢谢观赏 !
在图 1中,DNA 梯 (车道 1) 的大小和近似浓度的 PCR 产物的乐队提供了参考。阴性对照 (车道 2) 不包含任何遗传材料,而阳性对照 (车道 3) 从已知含有目标 DNA 以指示目标乐队的大小和位置的模板扩增。4、 6、 8 和 9 的样品作为阳性对照,因此指示这些样本包含目标遗传材料表现出类似的乐队模式。如果敌人让你生气,有机体是目前这些样品被获得的环境中。
图 1。可视化上琼脂糖凝胶电泳后的乐队。
Pcr 技术可以用来快速确定在环境中的病原体的存在与否。例如,引物特定于大脑吃虫, Naegleria fowleri,将放大 DNA,产生强带上一种凝胶,如果有机体是样本中存在。如果一个单一的有机体不是主要的兴趣,而宁愿从各种各样的生物毒素生产相关的基因,pcr 技术也可以用于确定存在这些特定的遗传材料。
聚合酶链反应也可以作为一个确认程序分析环境微生物实验室时。如果一种培养方法不能区分在环境样品中存在某些微生物,然后 PCR 也许用于具体区分候选人微生物。
常规的 PCR 可以修改几个方面为特定的实验目的。Pcr 技术可以用于分析单链 RNA 模板由耦合到反向转录步骤 (RT-PCR)。超越与缺乏存在的测定,定量 PCR (qPCR) 可以测量感兴趣的特定 dna 浓度。
The polymerase chain reaction, or PCR, is a fundamental biological technique that is widely applied to detecting and identifying microorganisms present in soil, water, and other environmental samples.
Classically, microorganisms are cultured in labs using specialized growth media. However, many microbes in the natural environment are “non-culturable” – either because they have very low metabolic activity or growth rate, or because they have very stringent growth requirements that may not be replicable in a culture dish. The differences in culturability among microbes also mean that, when microorganisms from an environmental sample are cultured, their relative abundance in culture might not reflect their actual levels in the environment.
The advent of PCR, which can specifically amplify even small amounts of DNA present in a mixed sample, makes it possible to quickly detect and identify specific microbes of interest, even ones that are non-culturable, within the complex assortment of organisms present in an environmental sample.
This video will introduce the principles of PCR. It will then discuss a general protocol for performing PCR on DNA isolated from an environmental sample in order to detect the presence of an organism of interest. Finally, several applications of PCR-based microbe identification will be explored.
The basic premise of PCR is to use repeated cycles of sequential temperature changes to achieve exponential amplification of DNA, usually with a machine known as a thermocycler to automatically cycle through the different temperatures. The DNA synthesis is carried out by DNA polymerase enzymes that are obtained from bacteria living in hot springs, such as Thermus aquaticus or “Taq”. These polymerases are heat stable, allowing them to withstand the high temperatures used during PCR.
The target sequence, known as the amplicon, is amplified from the DNA template using two short stretches of nucleotides known as “primers”. Because of the high specificity of complementary nucleic acid binding, the primers allow for the targeted amplification of very specific sequences of interest. By designing primers that will only amplify a unique sequence, or a unique combination of sequences, from an organism of interest, PCR can be used to differentially detect for the presence of that organism’s DNA among all the genetic materials present in a complex environmental sample.
Each PCR cycle is divided into three phases. The first, known as “denaturation”, is usually set above 92 °C and lasts about 30 s. Denaturation is used to break DNA molecules into single strands, to permit the amplification reaction to proceed.
The second phase, “annealing”, is set 2 to 3 °C below the lower of the melting temperature of the two primers, usually between 50 to 65 °C, and also lasts about 30 s. Melting temperature is the temperature at which 50% of the double-stranded DNA molecules have separated into single strands, and so the annealing step allows the primers to bind to their target sites in the DNA template.
The third phase of a PCR cycle is “elongation” or “extension”, when the DNA polymerase binds to the primer-template duplex and catalyzes synthesis of the new strands. Set at 72 °C for the most commonly used PCR polymerase, Taq, the duration of this phase depends on the length of the amplicon, usually 30 s per 500 basepairs. After each cycle, the amplified DNA is once again denatured and serves as a new template, leading to an exponential increase in the amount of PCR products.
Once the reaction is complete, the PCR products can be resolved by size on a “gel” usually made of the polymer agarose, a process known as electrophoresis. An electric field is applied across the gel, and the negative charges in the backbone of DNA molecules cause them to migrate towards the positive end of the field. Generally speaking, linear DNA molecules that are larger will take longer to travel through the gel matrix.
Now that you understand how PCR works, let’s take a look at how the reaction can be used to identify microorganisms in an environmental sample.
To begin, calculate the volume of each reagent needed based on the number of samples to be processed, plus an additional 10% to account for pipetting errors. A positive control template – which contains the target region – should be included to ensure that the reaction is working; as well as a negative control where no DNA template is included, in order to rule out contamination in any of the reaction components. Keep the Taq polymerase enzyme on ice, and thaw the rest of the reagents and the DNA samples at room temperature at a designated laminar flow hood to prevent contamination.
Once all the reagents have thawed, constitute the reagent “master mix” by adding the calculated volume of each reagent into a low-binding microfuge tube, which minimizes discrepancies in reagent amounts due to adsorption of molecules to the tube surface. Gently vortex and centrifuge each reagent before adding. Once the master mix is prepared, vortex to mix and collect by centrifugation.
Label an 8-tube PCR strip to designate one tube for each sample, including the controls. Dispense the appropriate amount of PCR master mix into each tube of the strip. Then, add each DNA sample to the respective tube.
Place the strip cap securely on the strip tube, and centrifuge briefly in a mini-centrifuge with a strip adaptor. Then, place the tube into the thermocycler, and run the reaction according to the appropriate PCR program.
While the PCR is being run, prepare an agarose gel for the electrophoresis of the PCR products. Weigh out an appropriate amount of agarose powder for a gel with a concentration that can resolve the PCR products based on their expected sizes. Add the agarose into a 125-mL flask, then add the appropriate volume of gel-running buffer into the flask, based on the volume of the gel cast, and swirl to mix. Microwave the agarose solution at high power for 1 min. When complete, verify the agarose has fully dissolved by swirling the flask, and repeat microwaving in 30-s increments if necessary.
Tightly secure the cap onto the flask, and cool the agarose solution to 50 °C by swirling the flask under running cold water. Once cooled, add 1 μL of ethidium bromide to the agarose. Because ethidium bromide is potentially carcinogenic, be sure to wear personal protective equipment such as goggles, a lab coat, and ethidium bromide resistant gloves.
Pour the agarose solution into an electrophoresis gel-casting tray, making sure that no air bubbles are trapped within the agarose. Place a comb with the required number of wells into the solution. Leave the gel at room temperature for 20 to 30 min to solidify. Once the gel is set, carefully remove the comb, making sure not to tear the gel in the process.
Place the solidified gel into the electrophoresis chamber. Add LB buffer into the chamber until the gel is just submerged. Onto a piece of Parafilm, pipette a “spot” of DNA ladder of a suitable range for the expected size of the PCR products. Retrieve the PCR tubes with the completed reactions from the thermocycler. Collect condensates in the PCR tubes by brief centrifugation, and add 8 μL of each sample onto the Parafilm. Add 2 μL of 10x loading dye into each spot of PCR product, so that the final concentration of the dye is 2x.
Load the samples and ladder into the designated wells in the agarose gel, being careful not to poke through the gel. Once loading is complete, put on the lid to the electrophoresis chamber, and connect the electrodes to the power supply. Since DNA is negatively charged and migrates towards the positive electrode, be sure the wells are on the side closer to the negative electrode. Turn on the power supply, and set it to a voltage appropriate for the size of the electrophoresis chamber and the buffer system being used. Set the electrophoresis to “run”. Small bubbles moving up the sides of the chamber will be observed if the electrophoresis is proceeding properly.
Once the dye front has advanced far enough down the gel, turn off the power supply. Carefully transport the gel to a gel imager to visualize the electrophoresed products. With a protective shield, turn on the UV light and visualize the DNA bands on the gel. Analyze the position of the bands to see if it matches the expected pattern that indicates the presence of the species of interest in the environmental sample.
Now that you have seen how PCR is performed, let’s look at various ways it is applied to detect microorganisms of interest in the environment.
One use of PCR-based environmental microbial detection is to identify disease-causing organisms such as the “brain-eating amoeba” Naegleria fowleri, a single-cell organism found in fresh water bodies and unchlorinated pools that can attack the human nervous system, often fatally. The presence of this deadly microbe in either water samples or the cerebrospinal fluid of suspected patients can be tested by performing PCR using primers that target unique DNA sequences in the amoeba’s genome.
Another application for PCR-based microbial identification is to test for the presence of pathogenic bacteria in flies caught in the vicinity of food establishments, as part of public health monitoring and disease outbreak investigations.
Here, investigators looked for the presence of pathogenic bacteria such as Salmonella and Listeria, by first isolating bacteria from both the body surface and the digestive canal of flies, and then using species-specific culture conditions to enrich for these species of interest. After extracting DNA from any bacteria that were cultured, commercially available species-specific detection PCR kits was used to test for their identity.
Finally, different strains of antibiotic-resistant pathogenic bacteria such as Staphylococcus aureus, which present major public health concerns, can be identified and differentiated with PCR.
In this example, researchers isolated and cultured S. aureus from clinical samples, then extracted DNA from the bacterial colonies and performed PCR. The amplification reactions here were “multiplexed”, meaning that multiple primer sets targeting different unique regions of the bacterial genome were combined into the same reaction. Individual primer sets were designed so that PCR products result from DNA of only some strains but not others, so that in combination, unique product band patterns were observed for each strain.
You’ve just watched JoVE’s video on PCR-based microorganism detection. We’ve looked at the principles behind polymerase chain reaction; a protocol for performing PCR on DNA extracted from environmental microorganisms; and finally, several specific applications of this technique to test for organisms of interest in different types of environmental or clinical samples. Thanks for watching!
Related Videos
Environmental Microbiology
359.4K 浏览
Environmental Microbiology
126.4K 浏览
Environmental Microbiology
100.3K 浏览
Environmental Microbiology
42.3K 浏览
Environmental Microbiology
57.3K 浏览
Environmental Microbiology
28.8K 浏览
Environmental Microbiology
44.6K 浏览
Environmental Microbiology
40.4K 浏览
Environmental Microbiology
47.8K 浏览
Environmental Microbiology
29.5K 浏览
Environmental Microbiology
39.3K 浏览
Environmental Microbiology
40.7K 浏览
Environmental Microbiology
184.4K 浏览
Environmental Microbiology
296.0K 浏览
Environmental Microbiology
13.8K 浏览