固体和液体的密度测定

Determining the Density of a Solid and Liquid
JoVE Science Education
General Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education General Chemistry
Determining the Density of a Solid and Liquid

556,207 Views

07:19 min
June 15, 2015

Overview

资料来源: 实验室的迈克尔 · 埃文斯博士 — — 乔治亚理工学院

其体积的一种物质质量的比率被称为质量密度或简单地说,这种物质的密度。密度被表示在每个卷,如 g/mL 或公斤/米3质量单位。因为一种物质的密度不依赖于物质存在的量,密度是”密集的财产”。

要测量的材料样品的密度,必须确定的质量和体积的样品。对于固体和液体,平衡可以用于测量质量;然而,测定体积的方法是不同的固体和液体。由于液体能流动,并采取其容器的形状,如量筒或容量瓶玻璃器皿可以用来测量液体的体积。不规则形状的固体的体积可以测定浸没在液体中 — — 差异引起的另外的固体体积等于体的体积。

这个演示说明了测量固体和液体密度的方法。使用容量瓶和分析天平,可以确定酒精的浓度。使用一个量筒,分析天平,水作为排开的液体,可以确定锌金属的密度。

Principles

根据定义,所有的物质都有质量及占据卷。一种物质的密度是其质量对其体积的比率。在恒定的温度和压力,一种物质的密度是恒定的。

Equation 1

密度是物质的物质的一种不依赖于目前的量集约化属性。因此,密度可以用于标识一种未知的纯物质,如果参考密度的列表是可用的并且实验者可以选择方便的大量物质一起工作时测量密度。

要测量的密度,它是样品的物质的需要测量其质量和体积。通常在使用分析天平,精密的仪器,依靠重力样本所施加的力的情况下测定质量。容器来存放 (也用于测量体积) 的样品是权衡和针对性,所以只给了样品质量平衡显示屏上出现时样品添加到容器中。

对于液体,这个容器通常是容量瓶里,具有对应于一个特定卷的一个标志。容器是线充满了液体样品,并权衡再三后空瓶具有针对性。密度计测量是测量质量到在瓶上标明的容量的比率。

最坚实的物质是不规则的形状,使体积测定。它是不准确的例如,通过测量其尺寸确定的粉量。而不是直接测量尺寸或像容量瓶使用玻璃器皿,它是有必要做好用液体位移法测量形状不规则的固体的体积。包含一个已知的体积的液体 (其中固体不溶) 的量筒被针对性。固体被添加到缸,和总质量权衡再三确定固体的质量。加入的固体引起的液体,导致新的卷阅读向上位移。固体体积等于液体位移 (之前, 和之后添加固体液体体积的差异) 的体积变化。

Equation 2

对于液体,固体样品的实测的密度对测得的体积测量质量的比率。

Procedure

1.液体乙醇的密度的测定

  1. 在分析天平上干净和干燥 50 毫升容量瓶的地方。
  2. 按”皮重”零”按钮上的平衡。平衡应改为 0.000 g。
  3. 使用滴定管漏斗将 45 毫升的液体乙醇添加到容量瓶。
  4. 使用巴斯德吸管添加最后的 5 毫升的液体,只是直到液体的半月板的底部接触烧瓶上的标记。
  5. 又称容量瓶和记录的大量乙醇。
  6. 为了获得最佳结果,重复步骤 1.1-1.5 倍,获得两个额外的密度测量。

2.固体锌金属的密度的测定

  1. 添加到一个干净、 干燥 100 毫升量筒约 40 毫升的水。记录精确的水的体积。
  2. 在分析天平上放置的缸和水。按”皮重”零”按钮上的平衡。平衡应改为 0.000 g。
  3. 将大约 10 锌颗粒添加到量筒。记录新卷的水加锌颗粒采用液面后加锌 (图 1)。
    Figure 1
    图 1.锌添加到右侧缸导致水位向上流离失所。
  4. 打压平衡缸、 水和锌颗粒。记录锌颗粒的质量。
  5. 为了获得最佳结果,重复步骤 2.1-2.4 倍,获得两个额外的密度测量。

密度,定义为每单位体积的物质质量是重要的物性表征材料或化学系统。

数学上,密度计算每它占据的体积的一种物质的质量。希腊符号 ρ 通常用于表示密度的物理科学。若要获得一种物质的密度,由测量确定其质量和体积。

这个视频将介绍原则密度测定,计算两个固体和液体物质的密度和密度在科学研究中的一些应用程序。

所有的物质都有质量,并且那大量占有特定卷。

然而,相同的质量所占用量是空间的不同的不同的物质,根据他们各自的密度。例如,一吨的砖块具有相同的质量,一吨的羽毛,但占据相当少的卷。密度是质量除以体积得到的。.大规模的具鳞片或余额,可以测量和以克或千克表示。

按照约定,单位升或毫升,用玻璃器皿测量液体和气体的体积的是经常表示。定期状固体的尺寸可以直接与统治者或卡尺,有线性的单位,在单位如立方厘米给卷来衡量。一毫升等于一立方厘米。

不容易测量形状不规则的固体样品的尺寸。相反,他们的卷可以测定淹没在液体中的固体。潜体的体积等于流离失所的液体的体积。

现在,你理解密度的概念,让我们看看两个协议为准确判断的一种液体和固体的密度。

要开始此过程,请将干净和干燥的 50 毫升容量瓶置于天平上。稳定的测量后,包装重量平衡。平衡读数应当为零。用漏斗向烧瓶中添加大约 45 毫升的液体。未填校准马克。使用巴斯德吸管小心添加最后 5 毫升的液体,只是直到液体的半月板的底部接触烧瓶上的线。又称烧瓶和记录液体的质量。重复测量至少两次以获得额外的值来计算平均密度。此表所示的结果。平均密度计测量了 0.789 g/mL,匹配为乙醇的文学价值。

若要确定固体密度的不规则的颗粒形式,向一个清洁和干燥 100 毫升量筒添加约 40 毫升的水。确切的数量的记录。分析天平和皮重缸的地方。添加大约 10 微丸,并在加入后记录新的卷。权衡的缸,水和微丸。质量是只小球,其余有针对性。使至少两个额外集的质量和体积的测量来计算平均密度的值。锌的密度为三个不同的样品测定。它被发现是 6.3 g/mL。请注意,由于测量了在一个量筒,是比容量瓶不太精确,密度的精密程度较低。

现在让我们看看几种不同密度的应用程序到不同领域的科学研究。

密度是用于识别或验证纯净的材料,例如元素或其他物种已知纯度。例如,因为黄金具有更高的密度,比很多其他更便宜的金属,计算密度的一枚金币快速和廉价的方式来测试其纯度。如果密度与黄金的不匹配,硬币不是纯的。在这里,一枚金币被发现有大量的 27.55 g 和 1.84 厘米3,卷给 14.97 克/厘米3,这是明显小于黄金的密度 19.3 g/c m3,指示该硬币不纯金的密度。

密度测量也可以用于识别一种未知的物质,如果列表可能参考密度是可用的并且可以用来区分金属在外观上相似。在此示例中,这位科学家试图确定两个样本的闪亮的银色金属,可能是铝或锌。虽然两个样本具有相同的质量,其卷则大大不同。密度被确定为 2.7 和 7.1 g/cm3分别,确认他们的身份作为铝及锌。

最后,密度差异可用于分离组分的复杂混合物。在一个称为密度梯度离心的方法,分层的蔗糖或聚合物浓度降低创建渐变。该示例然后添加顶上。这种混合物然后遭受离心 — — 旋转的混合物在高的速度,以产生”离心力”,将导致分子的浓度梯度的形成。组件的混合物会迁移到一个点沿着这种梯度及其密度具有可比性。

在此示例中,特定类型的脂质小滴或小水滴的脂肪分子,是从细胞分离。匀浆的混合物首先制得打破细胞开放。通过离心中蔗糖密度梯度的混合物,水滴,成功分离从其它细胞组分的脂类成分,如细胞的膜使。

你刚看了朱庇特的引入密度的测定液体和固体。你现在应该明白质量、 体积、 密度,以及有如何衡量这些数量一个好主意。

谢谢观赏 !

Results

表 1列出使用 50 毫升容量瓶的乙醇对密度的测定结果。密度测量的质量除以 50.0 mL 计算。平均密度计测量了 0.789 ± 0.001 g/mL。表 2列表结果密度测定样品的锌金属使用 100 毫升毕业缸和液体位移法。请注意,被测量的密度是常数 (在实验误差) 内为这两种物质。表 2,具体而言,演示密度是独立的进行研究的物质的量。

审判 大量的乙醇 (g) 体积的乙醇 (毫升) 密度 (g/mL)
1 39.448 50.0 0.789
2 39.392 50.0 0.788
3 39.489 50.0 0.790

表 1。乙醇使用 50 毫升容量瓶密度的测定结果。

审判 大量的锌 (g) 体积的锌 (毫升) 密度 (g/mL)
1 5.6133 0.9 6.2
2 7.6491 1.2 6.3
3 8.2164 1.3 6.3

表 2.使用一个 100 毫升的锌金属样品的密度测定结果毕业缸和液体位移法。

Applications and Summary

密度是密集特性的一种物质。因此,密度测量可以用于确定一种未知的纯物质列表可能参考密度是否可用。例如,密度可以用于区分金属相似的外观 (图 2)。

在很低或很高的质量是最好的情况下,密度是物质的关键属性。材料工程师仔细考虑在这些上下文中的施工材料的密度。例如,一些轻量级的笔记本电脑的机构是铝制的至少有致密的金属之一。轻量级的网球拍包含另一种低密度的金属钛。

Figure 2
图 2:铝 (Al) 和锌 (锌) 金属的等效质量金属锌占由于其较高的密度量要小得多。

Transcript

Density, defined as a substance’s mass per unit volume, is an important physical property for characterizing a material or chemical system.

Mathematically, density is calculated as a substance’s mass per the volume it occupies. The Greek symbol “ρ” is normally used to denote density in the physical sciences. To obtain the density of a substance, its mass and volume are determined by measurement.

This video will introduce the principles of density determination, the procedures for calculating the density of both solid and liquid substances, and some applications of density in scientific research.

All matter has mass, and that mass occupies a specific volume.

However, the volume of space occupied by the same mass is different for different substances, depending on their respective density. For example, a ton of bricks has the same mass as a ton of feathers, but occupies considerably less volume. Density is obtained by dividing mass by volume. . Mass can be measured with scales or balances, and is expressed in grams or kilograms.

By convention, the volume of liquids and gases is often expressed in units of liters or milliliters, measured with glassware. The dimensions of regularly shaped solids can be measured directly with rulers or calipers, which have linear units, giving volumes in units such as cubic centimeters. One milliliter is equivalent to one cubic centimeter.

The dimensions of irregularly shaped solid samples cannot be easily measured. Instead, their volumes can be determined by submerging the solid in a liquid. The volume of the submerged solid is equal to the volume of liquid displaced.

Now that you understand the concept of density, let’s take a look at two protocols for accurately determining the density of a liquid and a solid.

To begin this procedure, place a clean and dry 50-mL volumetric flask on an analytical balance. After the measurement has stabilized, tare the balance. The balance should read zero. Use a funnel to add approximately 45 mL of liquid to the flask. Do not fill to the calibration mark. Use a Pasteur pipette to carefully add the final 5 mL of liquid, just until the bottom of the liquid’s meniscus touches the line on the flask. Weigh the flask again and record the mass of the liquid. Repeat the measurements at least twice to obtain additional values to calculate an average density. The results are shown in this table. The average measured density was 0.789 g/mL, matching the literature value for ethanol.

To determine the density of an irregular solid in pellet form, add approximately 40 mL of water to a clean and dry 100-mL graduated cylinder. Record the exact volume. Place the cylinder on an analytical balance and tare. Add approximately 10 pellets, and record the new volume after the addition. Weigh the cylinder, water, and pellets. The mass is only the pellets, as the rest have been tared. Make at least two additional sets of mass and volume measurements to calculate an average value of the density. The density for zinc was measured for three different samples. It was found to be 6.3 g/mL. Note that, since the measurements were made in a graduated cylinder, which is less precise than a volumetric flask, the density has lower degree of precision.

Let’s now look at several different applications of density to different field of scientific research.

Density is useful for identifying or validating pure materials, such as elements or other species of known purity. For example, because gold has a higher density than many other cheaper metals, calculating the density of a gold coin is a quick and inexpensive way to test for its purity. If the density does not match that of gold, the coin is not pure. Here, a gold coin was found to have a mass of 27.55 g and a volume of 1.84 cm3, giving a density of 14.97 g/cm3, which is significantly less than gold’s density of 19.3 g/cm3, indicating that the coin is not made of pure gold.

Density measurements can also be used to identify an unknown substance if a list of possible reference densities is available, and can be used to distinguish between metals similar in appearance. In this example, the scientist is trying to identify two samples of shiny silver metal, which could be either aluminum or zinc. While the two samples have the same mass, their volumes are considerably different. The densities were determined to be 2.7 and 7.1 g/cm3 respectively, confirming their identities as aluminum and zinc.

Finally, differences in density are useful for separating components of a complex mixture. In a method called density gradient centrifugation, decreasing concentrations of sucrose or polymers are layered to create a gradient. The sample is then added on top. This mixture is then subjected to centrifugation — the spinning of the mixture at high speed to generate a “centrifugal force” that will lead to the formation of a concentration gradient of the molecule. Components of the mixture will migrate to a point along this gradient with which its density is comparable.

In this example, a specific type of lipid droplets, or small drops of fat molecules, was isolated from cells. A homogenized mixture was first obtained by breaking the cells open. By centrifuging the mixture in a sucrose density gradient, the droplets were successfully separated from other cellular components that are made of lipids, such as the cells’ membranes. 

You’ve just watched JoVE’s introduction the determination of the density of a liquid and a solid. You should now understand mass, volume, and density, as well as having a good idea of how to measure these quantities.

Thanks for watching!

Tags