资料来源: 实验室的朱迪思 · Danovitch 和尼古拉 Noles — — 路易斯维尔大学
皮亚杰的发展心理学领域中的先驱,他的认知发展理论是最知名的心理理论之一。在皮亚杰的核心是思维的理论的儿童方式的改变,当然童年的想法。皮亚杰通过比较不同年龄段的孩子如何答复问题和他设计的问题提供了这些变化的证据。
皮亚杰认为,5 岁那年,儿童缺乏心理运算符或逻辑规则,背后原因的属性集之间的关系的能力。这一特性定义他所谓的术前认知发展阶段。皮亚杰的儿童能够使用心理操作经典措施之一就是他的养护任务。在此任务中,儿童列出两个完全相同的对象集。孩子们第一次显示的对象都是一样的对一个关键属性(数量、 大小、 体积等)。然后,对象之一修改所以看来比另一个不同 (例如,它是现在更长、 更宽,或更高),但关键属性保持不变。继这一转变,孩子们问来判断是否两个对象集的现在是相同或不同于原始的关键属性。
皮亚杰报道前运算阶段 (大约 2-7 岁) 的儿童通常判断要不同、 改造后,即使没有改变的关键属性的对象。他归因于儿童的不正确的反应,他们过度地关注的变化,而不是事实,关键属性保持不变。然而,多年来,研究人员认为,皮亚杰的守恒任务儿童推理技能无效的度量值。这些批评者认为儿童的性能差是由于任务要求,如关于实验者的目标和期望时关于关键属性的问题重复的假设。
该视频演示了如何进行皮亚杰的经典养护任务,1-2和小小的修改,在任务中如何设计可以显著改变儿童的准确性 (基于开发的 McGarrigle 和唐纳森3的方法)。
招募 4 到 6 年的儿童有正常的视觉和听觉。为了在该例中,只有两个孩子是测试 (每个条件的一个)。更大的样本量被建议时进行任何实验。
1.收集必要的材料。
2.数据收集
3.分析
在二十世纪中期,心理学家 Jean Piaget 开发他的养护任务,研究人员提供一种方法来评价的逻辑和推理能力的儿童,并最终提出认知发展的轨迹。
之间的 2 和 7,年龄时期皮亚杰称为试运行阶段,儿童缺乏心理运营商 — — 逻辑规则 — — 的背后原因对集的属性,如对象的大小之间的关系的能力。
具体地说,如果成年人显示了两块相同的质量,巧克力和其中之一发生融化,他们会用逻辑得出结论在两块巧克力的量守恒 — — 即使另一个属性,该形状,改变了一条。
不过,如果年幼的孩子经历同样的过程,问哪一条有更多的巧克力,但他们可能都说上融化的一个,因为它出现更广泛,似乎占用更多空间。
换句话说,孩子可能会专注于巧克力不相关属性的转换 — — 它的形状 — — 并不是关键的属性,他们被问及 — — 量 — — 这并没有改变。
虽然皮亚杰的意图是衡量发展的推理技巧,批评者认为,儿童保育任务成绩差 — — 喜欢那些处理而不是巧克力的粘土 — — 任务要求,如关于发问者的目标和期望关于关键属性的问题重复时的假设,其实是。
该视频演示如何设计实验调查儿童的推理,并使用经典版和皮亚杰的养护任务,修改后的版本,并举例说明如何收集和解释数据。我们还解释为什么研究人员质疑要求养护任务,并探索如何认识任务需求可应用于研究设置。
在这个实验中,儿童的 4 和 6-年岁年龄之间执行两种类型的任务 — — 保护的数量和长度。
在数量任务的初始阶段,儿童显示蓝色标记行和红色,每个都有相同的编号之一。
在这种情况下,令牌也同样间隔: 以上每个蓝色的标记是定位一个红色和无标记触摸彼此,最初创建具有相同的长度。
孩子们被问是否两行具有相同数量的令牌,如果一个人有更多。他们在这一阶段的反应作为一些初步判断。
随后的转型阶段,其中儿童分配到两个实验的条件之一是: 故意或偶然。
那些故意组中观察研究员一起,一行近中移动标记,以便它们接触。这是经典的皮亚杰的养护任务。
与此相反的是,儿童在偶然组手表作为研究者使用一只泰迪熊来操作令牌。这是修改后的版本的养护任务,由心理学家詹姆斯 McGarrigle 和玛格丽特 · 唐纳森设计的。
在这里,作为一个喜欢摆弄令牌和破坏实验的”流氓”代理,提出了一种玩具熊。重要的是,使用毛绒动物把焦点转移至从研究员,所以孩子们不要考虑考虑任务需求 — — 喜欢实验者的目标 — — 在下一阶段的测试。
在这两个实验的条件下,虽然令牌数目 — — 任务的关键属性 — — 在已修改的行不会改变,另一项及其属性 — — 间距 — — 确实。
后转型阶段,儿童又问是否任一行有多个令牌。
在此情况下,因变量是正确的后转型答复,儿童确定的两个行中的标记数是相等的百分比 — — 推理技能需要的答案。
编号任务之后是长度任务,遵循类似的原则。
在这里,孩子们最初显示两个不同颜色字符串的长度相同,其中两端对齐。他们是然后问是否任一字符串是更长的时间,或者如果他们是两个具有相同的长度。
在转型阶段,孩子们被分配到相同的条件下,他们被置于期间数量的任务。
对于意外组,流氓泰迪熊是带出和用来拉的字符串中的一个中心,以便它弯曲的其目的不再对齐与另一个字符串。这在”无意”的方式操作字符串。
与此相反的是,儿童在故意集团手表研究员执行相同的操作。
在这两种情况下,修改后的字符串的键属性 — — 其长度 — — 不会改变,但非必需的特性,它的形状,是。
最后,在后的转型阶段,儿童是再次问任一字符串是否更长的时间。
为此任务中,因变量是儿童确定两个字符串作为改造后的长度相同的答复的百分比。
基于皮亚杰的观点,和 McGarrigle 和唐纳森以前的工作,它预期的 — — 意外组相比 — — 少组儿童的故意将识别任何人相同的改造之后,一项任务中的对象。
这可能是由于误解研究员在后转型期的质询故意组的儿童。具体来说,他们可能认为研究者询问他们故意操纵,而不是键属性的维度。
为了准备实验,收集四个红色和蓝色四个令牌,所有的一切都有相同的直径。此外,获得两块 10 英寸的字符串在不同的颜色和一个小的玩具熊,能够被藏在盒子里。
迎接孩子,当他们到达,并导致他们放含玩具熊框中的表。坐在他们对面,毛绒的动物从框中删除它。告诉孩子,熊是”淘气,”和有时逃脱,毁了你会玩这个游戏。
之后这个玩具熊的介绍,通过创建两个行的令牌在孩子面前开始数量任务的初始阶段。保证每一行分为四个相同的颜色标记,和他们的均匀间距。
按顺序指向的每一行,并问孩子如果有更多的标记,或者两者都有相同的编号。记录孩子的响应。
在转型阶段,操纵令牌距离最远儿童根据他们被指派的条件行中的位置: 故意或偶然。
之后,为儿童分配到的意外情况,让他们回到在框中放置玩具熊。
在数量任务后的转型阶段,指向每个行和问孩子是否有更多的标记。再一次记录他们的反应。
现在,收拾这些令牌开始长度任务的初始阶段。所以,他们是平行的和他们的目的一致的位置在孩子面前的两个字符串。
指向每个字符串,然后问孩子是否更长的时间,或如果他们是两个具有相同的长度。记录他们的反应。
在转型阶段,操纵字符串进一步拿走了孩子的形状: 对于那些故意的组中,将你的手指放在中心的一个连续的字符串,并拉下;和那些偶然的组中,有泰迪熊使用其武器。
按顺序指向这两个字符串在孩子面前,问他们是否是更长的时间,或者它们是否具有相同长度。最后,记录他们的反应。
分析结果,池的数据的数量和长度的任务,以平均在哪里儿童判断对象必须相同后转型的关键属性的故意和意外条件试验。
排除任何儿童答错,初步判断问题,因为这意味着他们无法准确地判断属性等价。
通过使用独立样本 t 检验的两个条件比较分数。
相比,故意的组,通知意外组的孩子们更容易判断要相同改造后的数量或长度的对象。
这可能是由于事实,对于这种情况,玩具熊负责改造,并因此儿童有没有理由认为任何一个对象的属性故意操纵。因此,儿童仍然专注于他们问的关键属性。
现在,你知道关于研究者的目标的假设是如何影响儿童的推理在皮亚杰的养护任务,让我们看看如何可以在其他上下文中应用这一问题的任务需求。
任务需求的影响并不仅限于皮亚杰的守恒实验,因此重要的心理学家们在他们设计的研究涉及儿童时考虑。
例如,如果研究员反复问孩子一个问题关于图片为了代表,儿童可能改变他们思考研究者想要他们以不同的方式回答第一次的反应。
因此,必须小心确保儿童反应不是基于他们认为研究人员希望他们说或做。
此外,任务需求的影响已经引起了研究人员考虑到使用多种方法来衡量孩子的能力,可以准确地评估他们的长处和弱点的重要性。
例如,评价孩子的空间能力与任务,要求他们去实际操作的对象 — — 像有块,在一张图片创建一个形状的位置 — — 可能低估了的孩子的实际困难是运动技能的能力。
因此,更适当的方法,评估空间能力 — — 一个删除混杂的运动技能 — — 将向孩子展示图片的不同安排的区块,并问是否任意两幅图像匹配。
你刚看了朱庇特的视频对皮亚杰的守恒任务和其修改。到现在为止,你应该知道如何转变中一对对象或对象集的一项可用于评估推理中的孩子,和孩子们的答案可以受到任务需求。
谢谢观赏 !
研究人员测试 20 4-6 岁儿童通过,发现在意外情况下的孩子们更容易判断数量或长度的对象有保持不变后转型(图 1)。孩子们在故意条件下表现很差 (12%正确响应) 相比,儿童在偶然的条件下 (62%正确)。在这项研究的故意条件对应于皮亚杰的原始方法养护任务。因此,这种模式的结果表明,儿童更可能传递皮亚杰的守恒任务时任务在意外的转型,而不是一种故意陷害。然而,值得甚至在偶然的条件下,在这个年龄段的儿童仍有一些难分辨到正确的答案。
为什么做孩子发现很容易判断,两组对象保持不变时他们的淘气熊比当实验者重新安排他们重新安排了?一种解释是儿童解释,以不同的方式在每个条件问题。故意的情况下,当实验者故意移动该对象,然后最初把问题重复了,孩子们可能认为实验者是现在指的是维度 (例如,所包括的标记区域) 而不是键的属性,操纵,这也使得他们回答不正确。然而,在偶然的情况下,孩子们没有理由认为实验者打算改变任何事情,因此和他们专注于关键属性正确地回答了。
图 1:意思是在哪里儿童判断的关键属性是相同的改造之后,意外和故意的条件下试验的百分比。
这个演示说明了任务需求是如何影响结果的心理的研究,特别是在年幼的孩子。假设孩子使当成人是相互交谈,问困难的问题可能不总是很明显,但他们可以有主要影响儿童的反应。这一发现不仅为研究人员,同时也为教育工作者、 家长和其他人可能是在测量儿童的技能或质疑有关事件的儿童情况至关重要。
显示的操作只是一个例子的很多操作,这些已经被改变孩子们的演出上养护任务。尽管他原始的方法的不足,发展儿童的逻辑和推理技能改变的皮亚杰的建议还是有足够的研究支持,和他的观点依然广泛研究。如果有的话,此演示显示的值收敛取证跨不同的实验室和不同人群的儿童。
In the mid-twentieth century, psychologist Jean Piaget developed his conservation task, which provided researchers with a way to evaluate the logic and reasoning abilities of children, and ultimately proposed a trajectory for cognitive development.
Between the ages of 2 and 7, a period that Piaget called the pre-operational stage, children lack the mental operators—logical rules—that underlie the ability to reason about relationships between sets of properties, like objects’ sizes.
To elaborate, if adults were shown two pieces of chocolate of the same mass, and one of them happened to melt, they would use logic to conclude that the amount of chocolate in both pieces is conserved—even though another property, the shape, of one piece changed.
However, if young children were put through the same process and asked which piece has more chocolate, they’d likely say the melted one, as it appears wider and seems to take up more space.
In other words, the child may focus on the transformation of an irrelevant property of the chocolate—its shape—and not the key property that they were asked about—the amount—that didn’t change.
While Piaget’s intent was to measure the development of reasoning skills, critics have suggested that children’s poor performance in conservation tasks—like those dealing with clay instead of chocolate—is actually due to task demands, such as assumptions about the questioner’s goals and expectations when the question about the key property is repeated.
This video demonstrates how to design an experiment investigating children’s reasoning using both the classic version and a modified version of Piaget’s conservation task, and illustrates how to collect and interpret data. We also explain why researchers have questioned the validity of the conservation task, and explore how an awareness of task demands can be applied in research settings.
In this experiment, children between the ages of 4- and 6-years-old perform two types of tasks—conservation of number and length.
In the initial phase of the number task, children are shown a row of blue tokens and one of red, each with the same number.
In this case, the tokens are equally spaced: above every blue token is positioned a red one, and none of the tokens touch one another, creating the same length initially.
Children are asked whether both rows have the same number of tokens, or if one has more. Their responses at this stage serve as a preliminary judgment of number.
This is followed by the transformation phase, in which children are assigned to one of two experimental conditions: intentional or accidental.
Those in the intentional group observe the researcher move tokens in one row closer together, so that they are touching. This is the classic version of Piaget’s conservation task.
In contrast, children in the accidental group watch as the researcher uses a teddy bear to manipulate the tokens. This is a modified version of the conservation task, designed by psychologists James McGarrigle and Margaret Donaldson.
Here, the teddy bear is presented as a “rogue” agent that enjoys interfering with the tokens and ruining the experiment. Importantly, the use of a stuffed animal takes the focus off of the researcher, so children don’t take into consideration task demands—like the experimenter’s goals—in the next stage of the test.
In both experimental conditions, although the number of tokens—the key property of the task—in the modified row doesn’t change, another of its attributes—the spacing—does.
During the post-transformation phase, children are again asked if either of the rows has more tokens.
In this instance, the dependent variable is the percentage of correct post-transformation responses, in which children determine that the number of tokens in both rows is equal—an answer that requires developed reasoning skills.
The number task is followed by the length task, which follows a similar principle.
Here, children are initially shown two different-colored strings of the same length, the ends of which are aligned. They are then asked whether either of the strings is longer, or if they are both the same length.
During the transformation phase, children are assigned to the same condition they were placed in during the number task.
For the accidental group, the rogue teddy bear is brought out and used to pull the center of one of the strings so that it is curved and its ends no longer align with those of the other string. This manipulates the string in an “unintentional“ manner.
In contrast, children in the intentional group watch the researcher perform the same manipulation.
In both instances, the key attribute of the modified string—its length—is not altered, but a nonessential characteristic, its shape, is.
Finally, in the post-transformation phase, children are again asked whether either of the strings is longer.
For this task, the dependent variable is the percentage of responses in which children identify both strings as being the same length after the transformation.
Based on the previous work of Piaget, and McGarrigle and Donaldson, it is expected that—compared to the accidental group—fewer children in the intentional group will identify the objects in either task as being the same after the transformation.
This may be due to children in the intentional group misinterpreting the question asked by the researcher in the post-transformation phase. Specifically, they may think that the researcher is inquiring about the dimension they intentionally manipulated, rather than the key property.
To prepare for the experiment, gather four red and four blue tokens, all of which have the same diameter. In addition, obtain two 10-in. pieces of string in different colors, and a small teddy bear capable of being hidden in a box.
Greet the child when they arrive, and lead them to a table on which the box containing the teddy bear has been placed. Sit across from them, and remove the stuffed animal from its box. Tell the child that the bear is “naughty,” and sometimes escapes and ruins the game you will be playing.
After this introduction to the teddy bear, begin the initial phase of the number task by creating two rows of tokens in front of the child. Assure that each row consists of four of the same color tokens, and that they are evenly spaced.
Sequentially point to each row, and ask the child if either has more tokens, or if both have the same number. Record the child’s response.
For the transformation phase, manipulate the positions of the tokens in the row furthest from the child according to the condition to which they were assigned: intentional or accidental.
Afterwards, for children assigned to the accidental condition, have them place the teddy bear back in the box.
In the post-transformation phase of the number task, point to each row, and ask the child if one has more tokens. Again record their response.
Now, put away the tokens to begin the initial phase of the length task. Position two strings in front of the child so that they are parallel, and their ends are aligned.
Point to each of the strings, and ask the child whether one is longer, or if they are both the same length. Record their response.
During the transformation phase, manipulate the shape of the string further away from the child: For those in the intentional group, place your finger on the center of a straight string and pull down; and for those in the accidental group, have the teddy bear use its arms.
Sequentially point to both strings in front of the child, and ask them whether one is longer, or if they are of the same length. Finally, record their response.
To analyze the results, pool the data for the number and length tasks, and average the trials in the intentional and accidental conditions where children judged the key property of objects to be the same after transformation.
Exclude any children who answered the initial judgment questions incorrectly, as this suggests that they could not accurately gauge property equivalence.
Compare scores across the two conditions using an independent-samples t-test.
Compared to the intentional group, notice that children in the accidental group were more likely to judge the number or length of the objects to be the same after the transformation.
This may be due to the fact that, for this condition, the teddy bear was responsible for the transformation, and thus children have no reason to think that any property of an object was intentionally manipulated. Thus, children remain focused on the key property about which they were asked.
Now that you know how assumptions about researcher’s goals can influence children’s reasoning in Piaget’s conservation task, let’s look at how this issue of task demands can be applied in other contexts.
The effects of task demands are not restricted to Piaget’s conservation experiments, and are thus important for psychologists to take into consideration when they are designing research studies involving children.
For example, if a researcher repeatedly asks a child a question about what a picture is meant to represent, the child may change their response thinking that the researcher wanted them to answer differently the first time.
As a result, care must be taken to assure that children’s responses are not based on what they think the researchers want them to say or do.
In addition, the influence of task demands have provoked researchers to consider the importance of using multiple methods to measure children’s skills, so that their strengths and weaknesses can be accurately assessed.
For example, evaluating children’s spatial abilities with a task that requires them to physically manipulate objects—like having to position blocks to create a shape in a picture—may underestimate the abilities of a child whose actual difficulty is motor skills.
Thus, a more appropriate method to assess spatial abilities—one that removes confounding motor skills—would be to show children pictures of different arrangements of blocks, and ask if any two images match.
You’ve just watched JoVE’s video on Piaget’s conservation task and its modifications. By now, you should know how transforming one item in a pair of objects or object sets can be used to assess reasoning in children, and how children’s answers can be influenced by task demands.
Thanks for watching!
Related Videos
Developmental Psychology
54.3K 浏览
Developmental Psychology
10.2K 浏览
Developmental Psychology
54.4K 浏览
Developmental Psychology
15.1K 浏览
Developmental Psychology
33.0K 浏览
Developmental Psychology
13.1K 浏览
Developmental Psychology
10.5K 浏览
Developmental Psychology
15.1K 浏览
Developmental Psychology
5.3K 浏览
Developmental Psychology
5.2K 浏览
Developmental Psychology
61.6K 浏览
Developmental Psychology
5.7K 浏览
Developmental Psychology
6.3K 浏览
Developmental Psychology
14.4K 浏览
Developmental Psychology
11.0K 浏览