资料来源: 实验室的琳恩 · 奥康奈尔 — — 波士顿学院
当固体化合物溶解在溶剂中时,最终解决方案的冰点是低于纯溶剂。这种现象称为凝固点降低和温度的变化直接相关的溶质分子量的大小。这个实验的目的是利用凝固点降低的现象来确定其分子量寻找一种未知化合物的身份。这种化合物会被溶解在此解决方案中,冰点以及纯环己烷和环己烷,,将测量。这些两个温度差异允许未知物质的分子量计算。
解决方案的某些属性不同于那些纯溶剂发生溶质与溶剂分子之间的交互作用。表现出这种变化的属性被称为依数性,包括蒸气压降低、 沸点升高、 凝固点降低和变化在渗透压。这些属性是只取决于粒子溶解在溶剂中,不上身份的粒子的数量。一个粒子,在此情况下,定义为离子或分子。本实验研究了凝固点降低的属性。
当特定的溶质溶解在溶剂中时,下面的表达式是如此:
Δ T = Tf°-Tf = Kfm
条款 Tf° 和 Tf分别指纯溶剂和溶液的凝固点温度。术语”m”表示质量摩尔浓度,的解决方案,它被定义为每 1,000g 的溶剂中溶质的摩尔数。这个数量使用,而不是摩尔浓度,因为它不是温度依赖性。常数,Kf,被提到冻结凝常数是仅依赖于溶剂。温度的变化也是取决于溶质溶液中微粒-更多的粒子存在,温度的变化较大数量的。为此,前面的方程是有时写成:
Tf°-Tf = Kf我m
在那里我= 溶质粒子每溶解的公式单位生产的数量。在含有电解质的溶液,每个离子被认为是一种粒子。
本实验采用环己烷,是一种液体在室温下为溶剂的一种有机化合物。未知的化合物是一种非离子的有机分子;故等于 1。这种未知化合物分子量可以确定观察中环己烷的化合物溶液的凝固点和比较到冰点的纯环己烷。
复方环己烷具有熔点 (或冰点) 约 6 ° c。从室温通过其凝固点在冰浴冷却,被得到一系列的纯环己烷的温度。这些温度然后绘制为时间的函数。同样,未知的化合物溶解在环己烷溶液被得到温度冷却到冰点,其中也绘制。剧情应该类似于图 1中的情节。可以外推的 Tf° 和 Tf值,如图所示。图 1b,如溶液结冰的温度不实不保持完全恒定。溶液的凝固点是的点,它首先开始冻结,并由温度-时间曲线的斜率变化以图形方式表示。
质量摩尔浓度,m 的一种解决方案可以表示溶质的摩尔质量:
代此凝固点降低方程中的表达式 (在这里我= 1),获得:
重新排列要解决的摩尔质量,获得:
分子量 (在阿拉伯马格里布联盟) 的一种物质具有相同的数值值作为其摩尔质量。
未知的物质是下列化合物之一:
图 1。图 1a是一个阴谋的温度作为时间函数的 Tf° 测定纯溶剂。图 1b是一块温度作为时间函数的 Tf测定的解决方案。
连接到计算机的温度探头用于购买本实验的温度读数。温度探头具有不确定度为 ± 0.1 ° c。
1.在软件中设置的参数
2.测量环己烷的冰点
3.溶液的未知化合物的制备
4.测量未知化合物的冰点
凝固点降低是低于纯溶剂溶液的凝固点时观察到的现象。
这种现象从溶质与溶剂分子之间的相互作用的结果。冻结温度的差异是溶解在溶剂中的溶质粒子的数量成正比。
非挥发性溶质的摩尔质量,可计算出冻结温度,如果已知群众的溶剂和溶质在溶液中的差异。
这个视频将介绍凝固点降低和摩尔质量的溶质,确定摩尔质量的未知的溶质和诱导和观察冷冻温度变化的一些真实世界应用程序之间的关系。
凝固点降低是依数性,意味着它只受溶质对溶剂的颗粒,并不是他们的身份的比率。
在纯物质凝固点的熔化和凝固率相等。
当溶液冷却到冰点的溶剂时,溶剂分子开始形成一种固体。它是那么大力有利形成一个混合的网格的溶剂和溶质粒子。溶质粒子留在解决问题的阶段。只有溶剂溶剂互动有助于晶格形成,所以溶剂-溶质相互作用降低冻结相比,对纯溶剂的率。
在温度的冻结开始是溶液的凝固点。该解决方案随着冷却冻结,但这种持续的温度的降低反映了在溶液相中的溶质浓度增加。
最终,溶液温度太低,所以少溶剂仍然在它变得有利的溶质粒子,形成一个网格的液相中。一旦达到这个温度恒定大约直到混合物已冻结成固体。
从纯溶剂的凝固点、 冰点的解决方案和解决方案的质量摩尔浓度之间的关系,可以确定溶质的摩尔质量,因此溶质,识别。质量摩尔浓度或 m,是溶质的每千克溶剂摩尔浓度的措施。这种关系取决于冰点抑郁常数的溶剂和溶质粒子的数量生产单位溶解的公式。
可以用摩尔质量,表达质量摩尔浓度,所以方程可以重新安排,以解决为溶质的摩尔质量。这插入冰点方程允许摩尔质量,的澄清,一旦温度差而闻名。现在,你了解冰点凹陷的现象,让我们经过一个程序确定从冰点温度未知溶质的摩尔质量。溶质是一种非离子、 非易失性的有机分子,产生一个粒子溶解,公式单位和溶剂是环己烷。
要开始这项实验,请连接到计算机,以使数据收集温度探头。样品容器中插入温度探头和搅拌器。
设置数据集合的长度和采样速率。在数据收集的样品冻结允许足够的时间。
设置温度范围的上限和下限为样本。
添加到一个干净、 干燥的试管 12 毫升的环己烷。擦去 Kimwipe 的温度探头。这样的温度探头尖端在液体中居中和不触及两侧或底部插入试管塞子大会。
在烧杯,准备冰水浴。然后,启动温度数据采集。
将试管放入冰水浴,确保在试管里的液体水平低于表面。以恒定速率不断搅动液体。
一旦冻结开始,允许数据收集继续直到情节已趋于在一个恒定的温度。这是纯环己烷的冰点。从冰水浴中移除测试管,并允许它温暖到室温。
一旦融化了环己烷,准确衡量固体未知的材料称量纸上。删除从试管塞子和添加固体。避免让复合坚持试管。
把瓶塞和搅拌溶液,直到完全溶解固体。它是重要的是没有固态晶体保持。
设置参数的数据收集和准备新鲜的冰水浴。开始收集,将试管放入洗澡,并以恒定速率不断搅拌。一旦开始冻结,冻结点继续减少由于溶质浓度增加而增加。继续收集数据,直到这种减少边坡是明显。当实验完成后时,允许未知化合物温暖到室温,然后释放它按照有机废物的程序的解决方案。
在这个实验中,已知未知的物质要五个可能的化合物之一: 联苯、 萘、 蒽、 溴氯苯二溴苯。通过比较这些已知的物质的摩尔质量,可以确定未知的标识。
未知的溶质产生一个粒子溶解的公式单位。摩尔质量的未知的化合物、 环己烷、 溶质和溶剂,大众的冰点抑郁常数和差异计算冻结温度是所有需要的。
此示例中,使用了 0.147 g 的未知溶质。环己烷的冰点抑郁常数是 20.2 ° C 公斤每 mol 溶质。密度和体积的环己烷用于计算溶剂的质量。
从情节确定 freezing point 的纯溶剂和溶液的凝固点的值。
如果这种化合物已知的几个可能的化合物,在这个实验中,一个摩尔质量可以只被相比那些化合物。此实验提供五个选项,萘是最接近的匹配。
凝固点降低的现象有很多应用实验室内外。
氯化钙是首选氯化钠治疗道路结冰凝固点降低的影响。当氯化钙释放一个更多的粒子比氯化钠,它抑制进一步的水的冰点,因而融化冰在较低温度下。
在此研究中,熔化试验用两种不同的铁硫混合物。而用较少的硫试样仍部分固体,含硫较高的质量分数与试样完全液体温度的实验中,在。这表明,与更多的杂质,在这种情况下硫,观察到的熔点低于纯固体。在这里,两个样品的熔点差异借形成的地球核心的洞察。
你刚看了朱庇特的介绍如何使用冰点来确定未知化合物的身份。你现在应该明白这一现象的冰点降低、 凝固点降低和溶质的摩尔质量之间的关系,为什么这种现象是有益于各种行业。
谢谢观赏 !
可以计算的大量配发的环己烷。环己烷的密度是 0.779 g/mL。
从情节,可以确定 Tf° 和 Tf的值。
此外可以计算的摩尔质量,和因此分子量的未知的化合物。环己烷,Kf = 20.2 ° C 千克/摩尔溶质。
摩尔质量 = 134 g/mol
分子量 = 134 阿拉伯马格里布联盟
可能的化合物,分子量是:
为确定未知化合物分子量实验确定的值是接近萘的文学价值。
可以计算百分误差。
误差 %= 4.55%
也许最明显的现象的凝固点降低应用发生在冬季,当道路和人行道变得冰冷,和盐用来治疗光滑的表面。当盐和冰混合时,水的冰点被郁闷所以冰融化温度较低。因为凝固点降低的程度是依赖于溶液中的粒子数目,释放每个公式的单位,如氯化钙 (CaCl2),三种离子的盐经常被用于此目的。冰淇淋制造商也使使用的冰点时发生盐和冰混合。冰点是奶油的远远低于 0 ° C,尤其是奶油的当它奶油的结合糖和其他成分,用来做冰淇淋。 为此,冰和盐岩相结合,在外部容器的冰淇淋制造商实现足够温度低,冻结括在内部的容器中混合。
化学家利用在分析固体有机物质的凝固点降低的现象。化学合成固体产物的纯度通常是由测量熔点 (理论上讲,相同凝固点) 的材料决定的。如果该化合物中存在杂质,则观察到的熔点是低于预期。出现这种情况是因为固体开始融化,杂质能作为一种溶质溶解的液体形式的化合物;因此,这种化合物的熔化,或冻结,点被沮丧。
制药行业使用大量的有机溶剂反应,导致治疗剂合成。这些溶剂创建大量的液体废物对环境造成危险。偶尔,有可能利用凝固点降低现象,消除溶剂中合成的需要。当固体反应物参与反应被压在一起时,被降低这两种化合物的熔点 (或冻结) 点。如果这两种化合物有很低的熔点,实际上成为母子液体在室温时地面在一起,使分子间的相互作用与相互所以反应可以发生。这些无溶剂的过程是”绿色化学”研究,其中提到化学程序,减少或消除有害物质的生成和使用的例子。
Freezing-point depression is the phenomenon that is observed when the freezing point of a solution is lower than that of the pure solvent.
This phenomenon results from interactions between the solute and solvent molecules. The difference in freezing temperatures is directly proportional to the number of solute particles dissolved in the solvent.
The molar mass of a non-volatile solute can be calculated from the difference in freezing temperatures if the masses of the solvent and the solute in the solution are known.
This video will introduce the relationship between freezing-point depression and the molar mass of the solute, a procedure for determining molar mass of an unknown solute, and some real world applications of inducing and observing changes in freezing temperature.
Freezing point depression is a colligative property, meaning it is only affected by the ratio of solute to solvent particles, and not their identity.
At the freezing point of a pure substance, the rates of melting and freezing are equal.
When a solution is cooled to the freezing point of its solvent, the solvent molecules begin to form a solid. It is less energetically favorable to form a mixed lattice of solvent and solute particles. The solute particles remain in the solution phase. Only solvent-solvent interactions contribute to lattice formation, so solvent-solute interactions reduce the rate of freezing compared to that of the pure solvent.
The temperature at which freezing begins is the freezing point of the solution. The solution continues cooling as it freezes, but this continued decrease in temperature reflects the increasing concentration of solute in the solution phase.
Eventually, the solution temperature is so low and so little solvent remains in the liquid phase that it becomes favorable for the solute particles to form a lattice. Once this point is reached, the temperature remains approximately constant until the mixture has frozen solid.
The molar mass of the solute, and therefore the identify of the solute, can be determined from the relationship between the freezing point of the pure solvent, the freezing point of the solution, and the molality of the solution. Molality, or m, is a measure of concentration in moles of the solute per kilogram of the solvent. This relationship depends on the the freezing point depression constant of the solvent and the number of solute particles produced per formula unit that dissolves.
Molality can be expressed in terms of molar mass, so the equation can be rearranged to solve for the molar mass of the solute. Plugging this into the freezing point equation allows the elucidation of the molar mass, once the temperature difference is known. Now that you understand the phenomenon of freezing point depression, let’s go through a procedure for determining the molar mass of an unknown solute from freezing point temperatures. The solute is a non-ionic, non-volatile organic molecule that produces one particle per formula unit dissolved, and the solvent is cyclohexane.
To begin this experiment, connect the temperature probe to the computer for data collection. Insert the temperature probe and a stirrer into the sample container.
Set the length of data collection and the rate of sampling. Allow sufficient time in the data collection for the sample to freeze.
Set upper and lower limits of the temperature range to sample.
Add 12 mL of cyclohexane to a clean, dry test tube. Wipe the temperature probe with a Kimwipe. Insert the stopper assembly into the test tube such that the tip of the temperature probe is centered in the liquid and does not touch the sides or bottom.
In a beaker, prepare an ice water bath. Then, start the temperature data collection.
Place the test tube into the ice water bath, ensuring that the level of liquid in the test tube is below the surface. Continuously stir the liquid at a constant rate.
Once freezing begins, allow data collection to continue until the plot has leveled off at a constant temperature. This is the freezing point of pure cyclohexane. Remove the test tube from the ice water bath and allow it to warm to room temperature.
Once the cyclohexane has melted, accurately weigh the solid unknown material on weighing paper. Remove the stopper from the test tube and add the solid. Avoid allowing compound to adhere to the test tube.
Replace the stopper and stir the solution until the solid is completely dissolved. It is important that no solid crystals remain.
Set the parameters for data collection and prepare a fresh ice water bath. Start collection, place the test tube into the bath, and stir continuously at a constant rate. Once freezing begins, the freezing point continues to decrease due to the increasing solute concentration. Continue collecting data until the slope of this decrease is evident. When the experiment has finished, allow the solution of the unknown compound to warm to room temperature and then dispose of it according to the procedures for organic waste.
In this experiment, the unknown substance is known to be one of five possible compounds: biphenyl, bromochlorobenzene, naphthalene, anthracene, and dibromobenzene. The identity of the unknown can be determined by comparing its molar mass to these known substances.
The unknown solute produces one particle per formula unit dissolved. To calculate the molar mass of the unknown compound, the freezing point depression constant of cyclohexane, the mass of solute and solvent used, and the difference in freezing temperatures are all needed.
0.147 g of the unknown solute were used in this example. The freezing point depression constant of cyclohexane is 20.2 °C-kg per mol of solute. The density and volume of cyclohexane are used to calculate the mass of the solvent.
The values of the freezing point of the pure solvent and the freezing point of the solution are determined from the plots.
If the compound is known to be one of a few possible compounds, as in this experiment, the molar mass can simply be compared to those compounds. Of the five options provided for this experiment, naphthalene is the closest match.
The phenomenon of freezing point depression has many applications both inside and outside the laboratory.
Calcium chloride is preferred to sodium chloride for treating icy roads because of the effects of freezing point depression. As calcium chloride releases one more particle than sodium chloride does, it depresses the freezing point of water further and thus melts ice at lower temperatures.
In this study, a melting experiment was conducted with two different iron-sulfur mixtures. The sample with the higher mass fraction of sulfur was completely liquid at the temperature of the experiment, whereas the sample with less sulfur was still partially solid. This demonstrates that with increased impurities, in this case sulfur, the observed melting point is lower than for the pure solid. Here, the melting point differences between the two samples lend insight into the formation of the Earth’s core.
You’ve just watched JoVE’s introduction to using freezing point depression to determine the identity of an unknown compound. You should now understand the phenomenon of freezing point depression, the relationship between freezing point depression and the molar mass of the solute, and why the phenomenon is useful to a variety of industries.
Thanks for watching!
Related Videos
General Chemistry
660.3K 浏览
General Chemistry
276.2K 浏览
General Chemistry
557.6K 浏览
General Chemistry
384.5K 浏览
General Chemistry
184.0K 浏览
General Chemistry
141.7K 浏览
General Chemistry
347.4K 浏览
General Chemistry
426.1K 浏览
General Chemistry
79.6K 浏览
General Chemistry
159.0K 浏览
General Chemistry
266.2K 浏览
General Chemistry
161.1K 浏览
General Chemistry
196.6K 浏览
General Chemistry
44.9K 浏览
General Chemistry
91.9K 浏览