资料来源: 实验室的博士伊恩胡椒和博士查尔斯称-亚利桑那大学
演示作者: 布拉德利施密茨
藻类是高度异构微生物群,有一个共同点,即持有光合色素。在环境中,藻类生长在水中通过游泳池业主造成问题。藻类也可以在表面的水域,如湖泊和水库,由于藻类的大量繁殖,释放毒素引起问题。最近,藻类正在评估作为新型能源通过藻类生物燃料。蓝绿海藻是实际上列为蓝藻的细菌。蓝藻不仅进行光合作用,但也有能力解决大气中的氮气。其他藻类是真核生物,从单细胞生物到复杂的多细胞生物体,像海藻一样。这些包括绿色藻类、 euglenoids、 甲藻、 金褐藻、 硅藻、 褐藻和红藻。在土壤中,藻类的人民往往是 106每克。这些数字是低于相应的数字为细菌、 放线菌和真菌,主要是因为光合作用所需的阳光不能穿透土壤表面之下。
因为藻类光合,从光合作用和生物量的二氧化碳,碳获取能量他们能在生长培养基组成完全的无机营养盐和无有机碳基底。有机基质缺乏排除异养细菌的生长。使用无机生长培养基,藻类最初目前在土壤或水可以量化最可能数 (MPN) 法。MPN 法依赖于先后稀释样品,这样藻类本身被稀释至灭绝。在任何稀释藻类的存在取决于生长介质,通常是绿色的粘液,藻类的光合作用从结果中的一个积极的迹象。使用复制每个稀释管和管为生长在任何给定的稀释阳性数目统计评价允许藻类原始样本中存在数目计算。MPN 表有已经制定并公布具体到一个特定的 MPN 设计,包括在每个稀释用的复制数目。
图 1。如何使 10 倍稀释系列。
管 | 稀释 |
B | 10-2 |
C | 10-3 |
D | 10-4 |
E | 10-5 |
F | 10-6 |
表 1。管和稀释。
藻类是生活在各种环境下的光合生物。住宅藻类的土壤可培养在实验室里和枚举使用简单的计算其浓度。
藻类是一高度异构群有一个共同点,即持有光合色素,通常叶绿素的有机体。绝大多数的藻类是微观的然而,该集团的确切定义是有争议的和还包括海藻,是通常宏观。
在环境中,藻类可以导致在表面水域湖泊或水库,形成耗尽水养分,挡住光超出水面,传递和释放毒素的藻类大量繁殖的问题。枚举在样品中的藻类的能力允许科学家评估健康的生态系统和藻类过度繁殖的潜在风险。
在土壤中的藻类种群经常发生在大约 1 万细胞每克。这些数字是通常低于相应浓度的细菌、 真菌、 放线菌,如藻类需要阳光进行光合作用,因此不能穿透远远低于土壤表面。
此视频将说明如何培养藻类从土壤在实验室中,以及如何枚举藻类起始的土壤样品中的浓度。
海藻有对生态系统的有益影响。蓝绿海藻或蓝藻,有能力解决氮气从大气中,使它们有用在增加土壤氮素在半干旱的环境中,也作为生物燃料生产的潜在工具。
其他藻类是真核生物,和范围从单细胞到复杂的多细胞生物体,像海藻一样。这些包括绿藻、 euglenoids、 双鞭甲藻和硅藻、 褐藻和红藻。
藻类是光养,从光合作用和生物量从二氧化碳碳获取能量。因此,他们可以种植在媒体完全由组成的无机营养盐,无添加有机碳基底。这种缺乏有机基质可防止异养细菌生长,依赖外部有机碳的增长。
对文化藻类为枚举,土壤样品连续稀释了十倍,10-6 g 土壤每毫升,和体外生长介质。几个复制向每个稀释。他们然后孵化通明达 4 周,以使藻类生长的地区。
在任何稀释藻类的存在取决于生长在介质中,通常会出现绿色的粘液作为一个积极的迹象。最后,根据经验获得的的 MPN 表设计的藻类生长被咨询,使用户能够确定基于增长稀释原始藻类浓度复制。MPN 法依赖串行稀释的样品,这样藻类被稀释至灭绝,意味着在一些稀释,没有藻类生长随之而来。
现在,我们都熟悉背后成长和枚举藻类从样本的概念,让我们看看如何这在实验室中进行。
开始的实验,首重 10 克的潮湿的土壤,要么被潮湿野外采集的,或已水化和 2 至 3 天仍然潮湿了。土壤应但不是饱和。
接下来,准备十倍稀释系列 10 克土壤首先加入 95 毫升的修改布里斯托尔解决方案或按揭证券。这称为悬浮 A.
在剧烈摇晃后, 继续稀释系列 9 毫升的 MBS 在试管中加入 1 mL 悬浮液 A。继续这十倍稀释系列另一个 4 倍稀释至每毫升 10-6克。
接下来,接种 5 复制管,每个包含 9 毫升的 MBS 与每个稀释 10-1到 10-51 毫升。这会导致每个稀释从 10-2至 10-65 复制管。帽管松散。
最后,孵育管完整的 4 周在区域暴露于阳光下。观察管的藻类生长每 7 天一次。参展藻类生长管将显示为绿色。
最可能的数目或 MPN,分析是常用的数学方法来枚举从集中的初始底物稀释生长的微生物。通过考虑稀释因素的解决方案和增长的积极迹象显示在每个稀释的管数目,可以使用 MPN 表和简单的公式计算每克原土样的有机体的最大可能数量。
若要计算 MPN,积极复制管数目最高稀释被分配p1,在这种情况下,管 C.复制的标签相比之下,一些从 D 管 & E 是消极没有藻类生长的迹象。
在显示出积极的增长,接下来的两的高稀释液管数目被称为p2和p3。在这里, p2 = D 和p3 = E.
藉由看下来 MPN 表的第一列,可以发现p1的值。同样应该与p2列。最后, p3,横跨顶部的值用于相交两个由p1和p2,定义要赋予一个有机体每毫升的最大可能数量的值。
下一步,若要计算每克原始土壤样品中微生物的浓度,此值被除以土壤p2被指派的稀释浓度。下面的等式用来定义每克土壤有机体的实际数量。
藻类的枚举和 MPN 分析具有广泛的应用,其中一部分在这里进行了探讨。
藻类枚举此培养方法可以用于各种设置。它可以应用于河流或湖泊藻类的水平,确定和评估有害藻类的风险。或者,它可以用于评估的清洁和安全的水域更直接使用人类,包括游泳池、 喷泉里的水或其他饮用水源。理想情况下,在饮用的水样品和游泳池,有目前没有藻类。
枚举的 MPN 分析也可以应用于其他非藻类的微生物。例如,可以使用如大肠菌或大肠杆菌的指示生物评估水质量。在这里,样品可培养与媒体含有的改动,以产生颜色或荧光指示生物存在的化学物质。通过执行多个小复制这个实验在单个细胞,与样品稀释至已知浓度,阳性细胞比率可以引用 MPN 表,具体指标的有机体,并测定样品中的起始浓度。
也可能为商业应用养殖藻类。例如,某些类型的肥料利用蓝绿海藻,可以作为共生植物,协助他们的夹具和卷绕的氮,在协助地区作物生长与贫瘠的土壤中特别有用。同样地,可以种植藻类生物燃料,或作为家畜营养丰富食物来源。
你刚看了朱庇特的简介藻类养殖和枚举。现在,您应该了解如何对藻类生长的土壤样品稀释、 如何培养藻类在实验室中,以及如何枚举藻类起始样品的浓度。谢谢观赏 !
图 2是一个标志性的成果的例子。
p1选择要复制的最高的稀释,(至少集中在土壤) 具有最高数目的积极管管数目。在这里,从管 B 复制不算,因为那些管 C 是从更高的稀释。与此相反的是,从管 D 的增长的积极迹象的管数目小于那些从管 C.所以, p1 = 5。
p2 、 p3被选为在显示正数的增长,接下来的两的高稀释液管数目。因此, p2 = 3, p3 = 1。
藉由看下来的第一列在表 2中,可以发现p1的值。同样是在p2列。然后, p3 (顶部) 的值与相交两个定义由p1和p2的值。在此示例中,值为 1.1 生物每毫升。
此值除以土壤p2所指派的稀释浓度。在此示例中,这是管 D.
因此,在这个例子中,有 1.1 x 104藻类细胞每克土壤。此值是相当典型的发现在土壤中的藻类数目。
图 2。藻类枚举实验的假设结果。阴影的管表明藻类的存在。未着色管表示缺少的藻类。
最大可能数指示值p3 | |||||||
p1 | p2 | 0 | 1 | 2 | 3 | 4 | 5 |
0 0 0 0 0 0 |
0 1 2 3 4 5 |
— 0.018 0.037 0.056 0.075 0.094 |
0.018 0.036 0.055 0.074 0.094 0.11 |
0.036 0.055 0.074 0.093 0.11 0.13 |
按 0.054 0.073 0.092 0.11 0.13 0.15 |
0.072 0.091 0.11 0.13 0.15 0.17 |
0.090 0.11 0.13 0.15 0.17 0.19 |
1 1 1 1 1 1 |
0 1 2 3 4 5 |
0.020 0.040 0.061 0.083 0.11 0.13 |
0.040 0.061 0.082 0.1 0.13 0.16 |
0.060 0.081 0.10 0.13 0.15 0.17 |
0.080 0.10 0.12 0.15 0.17 0.19 |
0.10 0.12 0.15 0.17 0.19 0.22 |
0.12 0.14 0.17 0.19 0.22 0.24 |
2 2 2 2 2 2 |
0 1 2 3 4 5 |
0.045 为 0.068 0.093 0.12 0.15 0.17 |
为 0.068 0.092 0.12 0.14 0.17 0.20 |
0.091 0.12 0.14 0.17 0.20 0.23 |
0.12 0.14 0.17 0.20 0.23 0.26 |
0.14 0.17 0.19 0.22 0.25 0.29 |
0.16 0.19 0.22 0.25 0.28 0.32 |
3 3 3 3 3 3 |
0 1 2 3 4 5 |
0.078 0.11 0.14 0.17 0.21 0.25 |
0.11 0.14 0.17 0.21 0.24 0.29 |
0.13 0.17 0.20 0.24 0.28 0.32 |
0.16 0.20 0.24 0.28 0.32 0.37 |
0.20 0.23 0.27 0.31 0.36 0.41 |
0.23 0.27 0.31 0.35 0.40 0.45 |
4 4 4 4 4 4 |
0 1 2 3 4 5 |
0.13 0.17 0.22 0.34 0.41 |
0.17 0.21 0.26 0.33 0.40 0.48 |
0.21 0.26 0.32 0.39 0.47 0.56 |
0.25 0.31 0.38 0.45 0.54 0.64 |
0.30 0.36 0.44 0.52 0.62 0.72 |
0.36 0.42 0.5 0.59 0.69 0.81 |
5 5 5 5 5 5 |
0 1 2 3 4 5 |
0.23 0.33 0.49 0.79 1.3 2.4 |
0.31 0.46 0.7 1.1 1.7 3.5 |
0.43 0.64 0.95 1.4 2.2 5.4 |
0.58 0.84 1.2 1.8 2.8 9.2 |
0.76 1.1 1.5 2.1 3.5 16 |
0.95 1.3 1.8 2.5 4.3 — |
表 2。在本练习中的实验设计用的最可能数字。
MPN 方法是人口的有用的因为它允许基于过程相关的归属功能估计。在示例中,功能性的过程是光合作用进行的藻类,允许在没有增长的有机碳。这允许在土壤中的藻类种群总数要枚举。
MPN 还用于估计的特定类型的水,如沙门氏菌,利用沙门氏菌耐药性孔雀石绿病原微生物数量。
进一步的应用通过接种土壤稀释到寄主植物和真菌寻找根部定殖是菌根真菌的估计。
Algae are photosynthetic organisms that live in a variety of environments. Soil dwelling algae can be cultured in the laboratory, and their concentration enumerated using simple calculations.
Algae are a highly heterogeneous group of organisms that have one common trait, namely the possession of photosynthetic pigments, commonly chlorophyll. The vast majority of algae are microscopic, however, the exact definition of the group is controversial, and also includes seaweeds, which are typically macroscopic.
In the environment, algae can cause problems in surface waters such as lakes or reservoirs, forming algal blooms that deplete the water nutrients, blocking light passing beyond the water surface, and releasing toxins. The ability to enumerate algae in samples allows scientists to evaluate the health of an ecosystem, and the potential risk of algal overgrowth.
Algal populations in soils frequently occur at around ten thousand cells per gram. These numbers are typically lower than corresponding concentrations of bacteria, fungi, or actinomycetes, as algae require sunlight for photosynthesis, which cannot penetrate far below the soil surface.
This video will illustrate how to culture algae from soil in the laboratory, and how to enumerate the concentration of algae in the starting soil sample.
Algae have beneficial effects on ecosystems. Blue-green algae, or cyanobacteria, have the ability to fix nitrogen gas from the atmosphere, making them useful in increasing soil nitrogen in semi-arid environments and also as a potential tool for biofuel production.
Other algae are eukaryotic, and range from single-celled to complex multicellular organisms, like seaweeds. These include green algae, euglenoids, dinoflagellates and diatoms, brown algae, and red algae.
Algae are phototrophic, obtaining energy from photosynthesis and carbon for biomass from carbon dioxide. As a result, they can be grown in media consisting entirely of inorganic nutrients, without an added organic carbon substrate. This lack of organic substrate prevents the growth of heterotrophic bacteria, which are dependent on external organic carbon for growth.
To culture algae for enumeration, soil samples are serially diluted tenfold to 10-6 g soil per mL, and cultured in growth media. Several replicates are made for each dilution. They are then incubated in a well-lit area for up to 4 weeks to allow algal growth.
The presence of algae in any dilution is determined by a positive sign of growth in the medium, which will typically appear as a green slime. Finally, empirically developed MPN tables designed for algal growth are consulted, enabling the user to determine the original algal concentration based on growth in dilution replicates. The MPN method relies on the serial dilution of samples such that the algae are diluted to extinction, meaning that at some dilution, no algal growth ensues.
Now that we are familiar with the concepts behind growing and enumerating algae from samples, let’s take a look at how this is carried out in the laboratory.
To begin the experiment, first weight out 10 grams of moist soil that has either been collected moist from the field, or been rehydrated and remained moist for 2 to 3 days. The soil should but not saturated.
Next, prepare a ten-fold dilution series by adding the 10 grams of soil first to 95 mL of Modified Bristol’s solution, or MBS. Label this as suspension A.
After shaking vigorously, continue the dilution series by adding 1 mL of suspension A to 9 mL of MBS in a test tube. Continue this ten-fold dilution series another 4 times to give dilutions up to 10-6 g per mL.
Next, inoculate 5 replicate tubes, each containing 9 mL of MBS with 1 mL of each of the dilutions 10-1 to 10-5. This results in 5 replicates tubes for each dilution from 10-2 to 10-6. Cap the tubes loosely.
Finally, incubate the tubes for a full 4 weeks in an area exposed to sunlight. Observe the tubes for algal growth once every 7 days. Tubes exhibiting algal growth will appear green.
Most Probable Number, or MPN, analysis is a commonly used mathematical method to enumerate microorganisms grown from dilution of a concentrated initial substrate. By taking into account the dilution factors of the solutions, and the number of tubes which show positive signs of growth at each dilution, the most probable number of organisms per gram of original soil sample can be calculated using an MPN table and simple formula.
To calculate MPN, the highest dilution with the highest number of positive replicate tubes is assigned the label of p1, in this case, the replicates of tube C. In contrast, some of the tubes from D & E are negative with no signs of algal growth.
The number of tubes in the next two higher dilutions that show positive growth are labeled as p2 and p3. Here, p2 = D and p3 = E.
The value for p1 can be found by looking down the first column in the MPN table. The same should be done with the p2 column. Finally, the value of p3, across the top, is used to intersect the two defined by p1 and p2, to give a value of the most probable number of organisms per mL.
Next, to calculate the concentration of organisms per gram in the original soil sample, this value is divided by the concentration of soil in the dilution to which p2 was assigned. The following equation is used to define the actual number of organisms per gram of soil.
Algal enumeration and MPN analysis have a wide range of applications, some of which are explored here.
This culturing method of algal enumeration can be used in a variety of settings. It can be applied to rivers or lakes to determine algal levels, and assess the risks of harmful algal blooms. Alternatively, it can be used to assess the cleanliness and safety of waters more directly used by humans, including swimming pools, water fountains, or other drinking water sources. Ideally, in potable water samples and swimming pools, there are no algae present.
The MPN analysis for enumeration can also be applied to other non-algal microorganisms. For example, water quality can be assessed using indicator organisms such as coliforms or E. coli. Here, samples can be cultured with media containing chemicals that are altered to produce color or fluorescence in the presence of the indicator organisms. By performing multiple small replicates of this experiment in individual cells, with samples diluted to a known concentration, the ratio of positive cells can be referenced to an MPN table for the specific indicator organism, and the starting concentration in the samples determined.
Algae may also be cultured for commercial applications. For example, some types of biofertilizer utilize blue-green algae, which can act as symbionts with plants, aiding their fixture and take-up of nitrogen, which is particularly useful in aiding crop growth in areas with poor soil. Similarly, algae can be grown for biofuels, or as a source of nutrient rich food for livestock.
You’ve just watched JoVE’s introduction to algal culture and enumeration. You should now understand how to dilute soil samples for algal growth, how to culture algae in the laboratory, and how to enumerate the algal concentration of your starting samples. Thanks for watching!
Related Videos
Environmental Microbiology
359.5K 浏览
Environmental Microbiology
126.5K 浏览
Environmental Microbiology
100.3K 浏览
Environmental Microbiology
42.3K 浏览
Environmental Microbiology
57.3K 浏览
Environmental Microbiology
28.8K 浏览
Environmental Microbiology
44.6K 浏览
Environmental Microbiology
40.4K 浏览
Environmental Microbiology
47.8K 浏览
Environmental Microbiology
29.5K 浏览
Environmental Microbiology
39.3K 浏览
Environmental Microbiology
40.8K 浏览
Environmental Microbiology
184.5K 浏览
Environmental Microbiology
296.1K 浏览
Environmental Microbiology
13.8K 浏览