资料来源: 实验室的乔纳森 Flombaum — — 约翰 · 霍普金斯大学
心理物理学是心理学的一个分支,并试图解释如何物理量的神经科学译成神经放电和震级心理表征。在这一领域的问题的一套属于只是明显的差异 (JND): 多少东西需要更改顺序的变化是可感知?泵对这的直觉,考虑这一事实小儿童成长以巨大的速度,相对来说,但人很少注意到发生在日常基础上的增长。然而,当孩子返回从睡眠离开营地或当祖父母或外祖父母看到孩子在长时间的缺席后,仅仅几个星期的增长是超过察觉。它可以看起来巨大 !因为在日常的基础发生的小变化太小,无法感知的高度变化是只缺席之后注意到。但后缺乏情况下,很多小的变化加起来。所以多多少成长需要采取明显的地方吗?最小金额是 JND。
心理学家和神经科学家测量 JND 在多个领域。光是多少美好必须要应注意的?的声音多么响亮需要?他们经常采用强迫选择范式获取测量结果。这个视频将侧重大小,证明标准的做法,对测量 JND 形状的面积发生变化时。
1.设备
2.刺激和实验设计
图 1。在测量实验,只是明显的差异 (JND) 圆的大小的被迫选择单次示意图描绘。首先,准备好屏幕提示将开始审判的参与者。接下来,两个蓝光碟出现在显示屏,肩并肩。他们依然存在只有 200 ms,此时显示提示用户输入的响应的参与者。’L’ 键用于指示在左边和 ‘R’ 键,以指示在右边的对象的对象。
图 2。从被迫选择 JND 实验示例输出表。列报告从实验程序相关的数据。
3.运行实验
4.分析结果
图 3。强迫选择实验来寻找圆半径的 JND 结果。绘制是大小的时间的比较刺激被选为大 (参与者) 比例作为函数的比较刺激。恒定刺激总是有一个半径 10 px。
到底多少东西确实需要更改差异被感知?
想到了,例如,年轻的孩子迅速成长的人 — — 在日常的基础上获得更高。然而,它往往是很难注意到微妙的变化,特别是如果他们仍在努力达到一个篮球。
在更长的时间跨度,其生长突增变得超过可认识;事实上,金额可以显得巨大 !时隔仅注意这些高度这些变化,因为小的日常差异太小,无法感知。
最小然而感知量只是–明显,这是,对于这个示例,最小数量的增长注意到。
该视频演示了一种标准方法测量只是–明显形状大小。不仅要做我们讨论设计和执行一项实验,所需的步骤,而且我们还解释了如何分析数据,解释结果只描述如何小面积变化是必要被感知。
在这个实验中,参与者被简要显示两个不同的圆,大小不同,被迫选择哪一家比较大。
每个在审判期间,一个总是提出了与同一圆周上,而其他多种多样的。这种方法称为恒定刺激法。
在这种情况下,不断的刺激为了有一个半径 10 px 和随机位于左边或右边的屏幕。相比之下,其他圈子,称为比较刺激,将有变化 5 至 9 及 11 至 15 px 的半径。
鉴于这些 10 的可能性,比较刺激是在每边,总共 200 次试验显示 10 倍。因变量被记录哪些刺激作为被选为较大的一个。
预计与会者将正确的选择,如果他们察觉到两种刺激之间的大小差异。然而,当形状接近圆周和下面的只是明显差异时,预测性能下降。
开始实验,迎接在实验室中的参与者。与他们舒舒服服地坐在电脑前,解释任务说明: 屏幕将有对它的”准备好了吗?”一词,直到他们按下空格键。
看着两个蓝色的刺激出现,指示参与者指出需要刺激他们认为较大的按 ‘L’ 键为左翼和 ‘R’ 的权利方面的反应。提醒他们,他们应该猜出他们是否不确定哪一个是更大。
后回答任何问题,参与者可能会有,离开房间。允许他们在 5 分钟内完成所有 200 次试验。用完后,回到房间里,感谢他们参加实验的一部分。
要分析的数据,第一次检索捕获每个参与者的反应的编程的输出文件。快速一瞥后的数据以确保性能是明智的 — — 即,当比较刺激的大小是 5 和 15 px,精度是近乎完美。
接下来,将一列添加到输出表称为 ‘精度’,以确定是否记录的答案是正确的或不。比较那些给予正确响应,所有的试验。下面的 IF 语句来注册 1 时给予的答案是正确的使用和 0 时是不正确的。
现在,将另一列添加到表,标有 ‘ 比例比较反应 ‘。比较列 ‘比较位置’ 与 ‘反应’ 和使用新的 IF 语句,以便时比较刺激被选中标记 ‘1’ 或 ‘0’,如果不断圈被选。
对结果进行可视化,使散点图的 x 轴上比较大小与时代它被选为 y 轴上更大的比例。记得,不断刺激总有 10 px 的半径,这就是为什么刺激的 5 或 6 px 半径几乎从来没有被选择和那些有 14 或 15 总是被选择。
9 或 11 px 半径,相比较是更加困难和参与者常犯错误。事实上,表现在机会水平,表明差异不被感知。
计算只是–明显,采取比较大小,选择是 75%的时间,在此情况下半径 12,减去被选 25%的时间的比较大小 — — 半径 8 — — 和将结果除以 2 答案 2 px。
换句话说,圈子的半径需要相差至少 2 px 为它们的大小,以准确地感知。
既然你已经熟悉中可视对象大小的看法只是明显的差异,让我们看看如何使用这一范式在神经生理学的研究,以探索大脑的反应和其他行为的情况下,例如区分食物中的脂肪含量。
研究者们在视觉皮层的调查如何单个神经元编码的物理性质的世界,像对象的大小。
使用测量与刺激演示文稿一起射击模式的电生理记录技术,研究人员发现,对大小敏感的神经元有将有时实际上不同大小的对象相同的方式作出回应。
这就是为什么 JND 都只是–鲜为人知: 有时,在大脑中,有关刺激真的做效果难以区分。
此外,研究人员有用于只是明显差异任务表征个别阈值检测食品中的脂肪含量。
他们发现较高的身体质量指数与个人要求高只是显著的变化或更高的门槛之前品尝样品中脂肪酸。这些结果可能导致新的办法来限制消耗多余脂肪。
你刚看了朱庇特的简介只是明显的差异。现在你应该有很好地理解如何设计和运行实验,以及如何分析和评估结果。
谢谢观赏 !
图 3中的图显示时间比较刺激作为一个函数其半径大小的比例。召回不断刺激总是有 10 px 半径在这个实验中。这是为什么,几乎从来没有选择比较,5 或 6 px 半径和它几乎总是选择半径如果 14 或 15 px。然而,9 或 11 px 半径,比较是很困难的。与会者经常犯的错误。JND 的定义如下: 比较大小当它选择约 75%的时间减去它的大小,当它选择 25%的时间,所有除以 2。在这里,这些数字分别为 12 和 8。所以为圆半径 JND 是 2 px。
为什么这是精确计算的 JND,不必做统计和正态分布 (钟形曲线) 的性质,有数学的详细的原因。但看着图应使计算更加直观。当半径是只有 1 px 小于或大于 10,参与者犯了许多错误,执行非常接近 0.5,这她会产生的如果她都只猜测。但性能迅速成为 2,像素差准确得多,而且很近完美 3 像素差或更大。图 4是图 3,为了说明计算的 JND 注释的版本。
图 4。图 3 注释的版本。
恒定刺激法测量 JND 的主要应用之一已经在神经科学,特别是在神经生理学研究旨在探讨如何单个神经元的编码对世界的物理属性。这些研究通常涉及内植入其视觉皮层电极的一只猴子。电极穿透发射或扣球,那就,进行快速的电气信号对视觉刺激反应的单个单元格。使用 JND 方法的研究,研究人员发现单个神经元也是吵-他们响应的大小或亮度或颜色的刺激更多或更少的相同的方式每一次,但与一些变异。结果是两个非常相似的刺激会引起同样的反应一定的时间。一个圆半径为 10 px 会有时得到相同的神经元回应是圆的半径为 9 px 或圆半径 11 px。这就是为什么 JND 都只是–鲜为人知: 有时,在大脑中,有关刺激真的做效果难以区分。
Exactly how much does something need to change for a difference to be perceived?
Think of, for instance, young children who grow rapidly—getting taller on a daily basis. However, it’s often difficult to notice subtle changes, especially if they still struggle to reach a basketball.
Over a much longer span, their growth spurt becomes more than perceptible; in fact, the amount can seem enormous! These changes in height are only noticed after a lapse because the small day-to-day differences are too small to be perceivable.
The minimal yet perceived amount is the just-noticeable-difference, which, for this example, is the smallest amount of growth noticed.
This video demonstrates a standard approach for measuring a just-noticeable-difference in shape size. Not only do we discuss the steps required to design and execute an experiment, but we also explain how to analyze the data and interpret the results describing just how small of a change in area is necessary to be perceived.
In this experiment, participants are briefly shown two different circles that vary in size and are forced to choose which one is larger.
During each trial, one is always presented with the same circumference, whereas the other is varied. This approach is referred to as the method of constant stimulus.
In this case, the constant stimulus is designed to have a radius of 10 px and located randomly on either the left or right side of the screen. In contrast, the other circle, called the comparison stimulus, will have a radius that varies between 5 and 9 and between 11 and 15 px.
Given these 10 possibilities, the comparison stimulus is shown 10 times on each side, for a total of 200 trials. The dependent variable is recorded as which stimulus was chosen to be the larger one.
Participants are expected to choose correctly if they perceived a difference in size between the two stimuli. However, when the shapes are closer in circumference and below the just-noticeable difference, performance is predicted to decline.
To begin the experiment, greet the participant in the lab. With them sitting comfortably in front of the computer, explain the task instructions: The screen will have the word “Ready?” on it until they press the space bar.
Watch as two blue stimuli appear and instruct the participant to indicate which stimulus they thought was larger by pressing the ‘L’ key for left- and ‘R’ for right-side responses. Remind them that they should guess if they are not sure which one is larger.
After answering any questions the participant might have, leave the room. Allow them to complete all of the 200 trials over a 5-min period. When they finish, return to the room and thank them for taking part in the experiment.
To analyze the data, first retrieve the programmed output file that captured each participant’s responses. Quickly glance at the data to make sure that performances were sensible—namely, that when the sizes of the comparison stimuli were 5 and 15 px, accuracy was near perfect.
Next, add a column to the output table called ‘Accuracy’ to determine whether the recorded answers are correct or not. Compare those given to the correct responses for all trials. Use the following IF statement to register a 1 when the response given was correct and 0 when it was incorrect.
Now, add another column to the table, labeled ‘Proportion of Comparison Responses’. Compare the column ‘Comparison Position’ with ‘Response’ and use a new IF statement to mark a ‘1’ when the comparison stimulus was chosen or a ‘0’ if the constant circle was chosen.
To visualize the results, make a scatter plot with the size of the comparison on the x-axis and the proportion of times it was chosen as being larger on the y-axis. Recall that the constant stimulus always had a 10-px radius, which is why stimuli with 5 or 6 px radii were almost never chosen and those with 14 or 15 were always chosen.
With a radius of 9 or 11 px, the comparison was more difficult and participants often made mistakes. In fact, performance was at chance level, suggesting that differences were not being perceived.
To calculate the just-noticeable-difference, take the comparison size that was chosen 75% of the time, in this case a radius of 12, minus the comparison size that was chosen 25% of the time—radius of 8—and divide the result by 2 for an answer of 2 px.
In other words, the radii of the circles need to differ by at least 2 px for their sizes to be accurately perceived.
Now that you are familiar with just-noticeable differences in the perception of visual objects’ sizes, let’s look at how this paradigm is used in neurophysiological studies to explore how the brain responds and in other behavioral situations, such as distinguishing between fat levels in food.
Researchers have investigated how individual neurons in the visual cortex encode the physical properties of the world, like objects’ sizes.
Using electrophysiological recording techniques that measure firing patterns in conjunction with stimuli presentation, researchers found that neurons that are sensitive to size will sometimes respond in the same way to objects that are actually different sizes.
This is why JND are just-barely-noticeable: sometimes, in the brain, the relevant stimuli really do produce indistinguishable effects.
In addition, researchers have used a just-noticeable-differences task to characterize individual thresholds for detecting fat concentrations in food.
They found that individuals with a higher body mass index required a higher just-noticeable difference, or higher threshold, before tasting fatty acids in the samples. These results could lead to new approaches to limit excess fat consumption.
You’ve just watched JoVE’s introduction to just-noticeable differences. Now you should have a good understanding of how to design and run the experiment, as well as how to analyze and assess the results.
Thanks for watching!
Related Videos
Sensation and Perception
11.0K 浏览
Sensation and Perception
17.2K 浏览
Sensation and Perception
11.7K 浏览
Sensation and Perception
6.8K 浏览
Sensation and Perception
18.3K 浏览
Sensation and Perception
17.3K 浏览
Sensation and Perception
13.2K 浏览
Sensation and Perception
14.8K 浏览
Sensation and Perception
15.8K 浏览
Sensation and Perception
5.7K 浏览
Sensation and Perception
15.5K 浏览
Sensation and Perception
15.9K 浏览
Sensation and Perception
15.3K 浏览
Sensation and Perception
24.3K 浏览
Sensation and Perception
6.4K 浏览