资料来源: 加州大学欧文分校化学系 Vy 先生和戴安娜
乙烯的固相合成是一个诺贝尔奖得主的发明, 其中的反应物分子是约束在坚实的支持和经历连续的化学反应, 形成一个理想的化合物。当分子与固体的支持, 过剩的试剂和副产品可以清除去除杂质, 而目标化合物仍然绑定到树脂。具体来说, 我们将展示一个固相肽合成 (许可证) 的例子来证明这个概念。
固相合成是一种用于简化分子合成的方法。它通常用于组合化学 (一种用于在短时间内制备大量分子的技术), 用于生成化合物库, 因为它易于纯化, 并能进行全面的化学合成。固相合成通常涉及树脂的使用;不, 聚合物的材料, 这是 pre-functionalized, 所以开始建设 blockcan 容易绑定。构建基块在添加到树脂上后通常会受到保护, 并且可以在解决方案中轻松 deprotected 和处理下一个所需的构造块 (图 1)。一旦合成了所需的分子, 就可以很容易地从树脂中劈开。
由于它是稳健的, 固相合成已被用于合成核酸, 寡糖, 和最常见的, 肽。乙烯在1963年发现并报道, 许可证已成为最广泛使用的方法来生成多肽库。乙烯荣获1984诺贝尔许可证奖。许可证可以很容易地利用 n-芴甲氧羰基 (基敏感) 或 Boc (酸敏感) 的N-保护基团的氨基酸, 建立库的多肽在短时间内。HBTU (偶联剂) 和i-Pr2EtN (底座) 激活氨基酸的C端, 用于与另一种氨基酸耦合。n-芴甲氧羰基保护基团可通过 4-啶去除, 而中银保护基团可被强酸性物质 (如乙酸酸) 除去。在这个实验中, 我们将通过合成二肽来演示许可证。我们将使用凯泽测试, 一个定性的方法来测试是否存在初级胺, 监测反应的进展。
图1。固体相肽合成 (许可证) 的概念。
1. 装载树脂
2. n-芴甲氧羰基组的脱
3. 执行凯泽测试
4. 连接下一块积木
5. 将树脂上的肽裂解
6. 沉淀和 I 隔离肽
固相合成法是将产品与不溶性材料结合时合成的一种方法。
固相合成通常用于生产生物齐聚物和聚合物, 如多肽、核酸和寡糖。这些分子由较小的分子亚基组成, 称为单体。合成一个齐聚物或聚合物需要许多步骤, 因为单体必须按照正确的顺序添加。
一个多步合成的问题是, 每个步骤的稳定产品的净化和隔离, 称为中间产品, 降低了总体产量。在固相合成中, 中间产物在整个合成过程中始终与固体的支撑相结合。这使得溶液相试剂, 溶剂和副产品被冲走, 消除了需要净化和隔离每个中间产品之间的步骤。
该视频将说明固相多肽合成的过程, 并介绍了固相合成在化学中的一些应用。
在固相合成中, 分子是在一系列反应的固体支持下合成的。例如, 一个齐聚物或聚合物将在一个时间合成一个单体, 形成最终产品。不断增长的齐聚物或聚合物仍然强烈地绑定到固体支持, 直到它被分离, 或劈开, 从支持与试剂。
每个单体都必须有至少两个结合位点作为聚合物链的一部分, 但只有一个结合点可以在一个时间内提供, 以确保单体绑定到正确的原子。这是通过保护组实现的, 它们是在合成的一个或多个步骤中没有反应的功能组。绑定站点被还原或deprotected, 通过使用特定的试剂将保护组转换为反应性功能组来处理该分子。
开始固相合成, 起始材料是绑定到一个专门设计的树脂或不溶性聚合物在其唯一可用的结合点。然后, 束缚起动材料是 deprotected 允许捆绑第二个单体在链子。接下来, 添加了链中第二个单体的溶液, 以及一个偶联剂, 以促进单体之间的粘结。
一旦第二单体与起始材料结合, 产生的二中间体产品 deprotected。这个过程是重复的, 直到目标齐聚物或聚合物形成。将该产品从固体支架中分离出来, 从中提纯、分离和分析。
固相合成常用于合成多肽, 即氨基酸链。氨基酸有胺类, 羧基, 和取代基, 或 “侧链”。胺最初被保护。一旦 deprotected, 胺形成一个肽键与下一氨基酸的羧基。
现在, 您了解了固相合成的原理, 让我们通过一个固相多肽合成的过程, 在其中我们将展示了前两种氨基酸的加入。
为了开始这个过程, 把一个接收瓶的废物连接到一个100毫升的手动多肽合成容器。然后将0.360 克 2-chlorotrityl 氯树脂放入容器中。
加入20毫升的胺到树脂和允许树脂珠子膨胀30分钟的氮气流量下。然后, 用真空吸干溶剂。
加入10毫升的 DMF, 1.6 摩尔的 n-芴甲氧羰基保护的氨基酸, 和2.5 毫升的n, n-diisopropylethylamine 到血管。氮气下的气泡, 混合溶液, 15 分钟, 将受保护的氨基酸加载到树脂上。
在真空下取出溶剂并进行第二次加载。除去溶剂后, 在10毫升的 DMF 部分中搅动负载树脂珠三次, 将每个洗涤液排入接收瓶中。
接下来, 在 DMF 中加入10毫升的20% 溶液中的 4-啶的载珠。将混合物泡15分钟, 除去 n-芴甲氧羰基。
排出溶剂, 重复脱工序。洗涤和沥干被装载的树脂三次, 象以前。将珠子储存在溶剂中, 直到它们准备好下一步。
为了验证被装载的化合物完全地 deprotected, 首先安置1到2滴每个凯泽测试解答在二个试管。
将一些装在试管中的珠子放在油浴中, 将两根管子加热至110度。脱是完整的, 如果树脂混合物变成深蓝色到紫色, 表明在混合物中存在胺类。
要开始耦合步骤, 先用10毫升的 NMP 在 N2 气体的流动下洗涤珠子。
然后, 加入10毫升的 NMP, 1.6 摩尔的 n-芴甲氧羰基保护的氨基酸, 1.6 摩尔的偶联剂 HBTU, 2.5 毫升 DIPEA 的负载树脂。
气泡 N2 气体通过树脂混合物30分钟, 然后排出溶剂。用10毫升的 DMF 部分洗涤和沥干三次, 像以前一样。
重复凯撒测试如果珠子和溶液变黄, 就会发生耦合, 表明没有胺类存在。
接下来, 将新的 n-芴甲氧羰基基团与 20% 4-啶在 dmf 中, 并用10毫升的 dmf 部分洗涤珠子。对目标肽中的每个剩余氨基酸重复脱。
在最后的氨基酸被 deprotected 和树脂珠子洗净后, 加入40毫升的肽裂解液, 将肽产品从树脂中分离出来。
气泡氮气通过树脂混合物为3小时, 然后更换接收瓶。将溶液从树脂混合物转移到真空下的新接收瓶。
为了产生最终的产品, 用旋转蒸发器除去溶剂。
固相合成广泛应用于生物和化学。让我们看几个例子。
固相合成为寡糖开辟了许多新的合成途径, 它们是简单的糖单体的短链, 具有重要的生物作用, 如储能。与肽键不同, 糖中的每个键都含有 stereocenter。合成寡糖, 不仅必须使单体的顺序正确, 而且还必须有正确的立体。固相合成技术的发展, 以夫妇每个单体的高度立体的过程, 今天是充分细化, 以自动化。
固相合成是一种常用的方法, 以组合化学, 这是在单一合成过程中合成许多变种的化合物的做法。被装载的树脂可以容易地被分裂成部分与不同的单体或分子反应。每个反应后, 部分被洗涤和重组。这是重复的, 直到所需的产品数量已经生成。这项技术在药物研究中特别有用, 因为它可以用来产生新的化合物或评估化合物的反应性与广泛的分子。
你刚刚看了朱庇特的固相合成导论。现在你应该了解固相合成的基本原理, 固相多肽合成的过程, 以及固相合成在有机化学中的应用实例。谢谢收看!
固体相肽 synthesisfor 过程3的代表性结果。
过程步骤 | 溶液颜色 |
3。1 | 控制-清除, 浅黄色 反应-清晰, 浅黄色 |
3。2 | 控制-清除, 浅黄色 反应–深蓝色 |
3。3 | 深蓝色解决方案, 珠蓝色-完全脱或耦合失败 无色, 珠黄色-脱失败或完成 无色溶液, 珠红色-不完全耦合或不完全脱 |
表1。 P程序 3 的代表性结果。
在本实验中, 我们通过合成一个二肽, 证明了通过许可证固相合成的例子。
固相合成广泛应用于组合化学中, 建立了化合物库, 用于快速筛选。它被普遍用于合成多肽、寡糖和核酸。此外, 这一概念已经在化学合成中得到实施。因为它是异构的, 这些固体支持的试剂通常可以回收和重复使用, 在随后的反应。
Solid phase synthesis is a method in which the product is synthesized while bound to an insoluble material.
Solid phase synthesis is often used to produce biological oligomers and polymers such as peptides, nucleic acids, and oligosaccharides. These molecules are composed of chains of smaller molecular subunits, called monomers. Synthesizing an oligomer or polymer takes many steps, as the monomers must be added in the correct order.
An issue with multi-step syntheses is that purification and isolation of the stable products of each step, called intermediate products, decreases the overall yield. In solid phase synthesis, the intermediate product remains bound to the solid support throughout synthesis. This allows solution-phase reagents, solvents, and byproducts to be washed away, eliminating the need to purify and isolate each intermediate product between steps.
This video will illustrate the procedure for solid phase peptide synthesis and introduce a few applications of solid phase synthesis in chemistry.
In solid-phase synthesis, a molecule is synthesized on a solid support in a sequence of reactions. For instance, an oligomer or polymer will be synthesized one monomer at a time to form the final product. The growing oligomer or polymer remains strongly bound to the solid support until it is separated, or cleaved, from the support with reagents.
Each monomer must have at least two binding sites to be part of the polymer chain, but only one binding site can be available at a time to ensure that the monomer binds to the correct atom. This is achieved with protecting groups, which are functional groups that are not reactive during one or more steps of the synthesis. The binding site is restored, or deprotected, by treating the molecule with specific reagents to convert the protecting group to a reactive functional group.
To begin solid-phase synthesis, the starting material is bound to a specially designed resin or insoluble polymer at its only available binding site. Then, the bound starting material is deprotected to allow binding of the second monomer in the chain. Next, a solution of the second monomer in the chain is added, along with a coupling agent to facilitate bonding between the monomers.
Once the second monomer binds to the starting material, the resulting dimeric intermediate product is deprotected. This process is repeated until the target oligomer or polymer has formed. The product is cleaved from the solid support into solution, from which it can be purified, isolated, and analyzed.
Solid phase synthesis is often used for the synthesis of peptides, which are chains of amino acids. Amino acids have an amine group, a carboxyl group, and a substituent, or ‘side chain’. The amine is initially protected. Once deprotected, the amine forms a peptide bond with the carboxyl group of the next amino acid.
Now that you understand the principles of solid phase synthesis, let’s go through a procedure for solid phase peptide synthesis, in which we will demonstrate the addition of the first two amino acids.
To begin the procedure, connect a receiving flask for waste to a 100-mL manual peptide synthesis vessel. Then place 0.360 g of 2-chlorotrityl chloride resin into the vessel. Connect a nitrogen gas line to the vessel sidearm and a vacuum line to the serrated hose adapter.
Add 20 mL of dimethylformamide to the resin and allow the resin beads to swell for 30 min under a flow of nitrogen gas. Then, apply vacuum to drain the solvent.
Add 10 mL of DMF, 1.6 mmol of an Fmoc-protected amino acid, and 2.5 mL of N,N-diisopropylethylamine to the vessel. Bubble under the nitrogen gas, which mixes the solution, for 15 min to load the protected amino acid onto the resin.
Remove the solvent under vacuum and perform a second loading. After removing the solvent, agitate the loaded resin beads three times in 10-mL portions of DMF, draining each wash into the receiving flask.
Next, add to the loaded beads 10 mL of a 20% solution of 4-methylpiperidine in DMF. Bubble the mixture for 15 min to remove the Fmoc group.
Drain the solvent and repeat the deprotection procedure. Wash and drain the loaded resin three times, as before. Store the beads under solvent until they are ready for the next step.
To verify that the loaded compound was completely deprotected, first place 1 to 2 drops of each Kaiser test solution in two test tubes.
Place a few loaded beads in a test tube and heat both tubes to 110 degrees in an oil bath. Deprotection is complete if the resin mixture turns dark blue to purple, indicating the presence of amine groups in the mixture.
To begin the coupling step, first wash the beads with 10 mL of NMP under a flow of N2 gas.
Then, add 10 mL of NMP, 1.6 mmol of the next Fmoc-protected amino acid, 1.6 mmol of the coupling agent HBTU, and 2.5 mL of DIPEA to the loaded resin.
Bubble N2 gas through the resin mixture for 30 minutes, and then drain the solvent. Wash and drain the beads with 10-mL portions of DMF three times, as before.
Repeat the Kaiser test. Coupling has occurred successfully if the beads and solution turn yellow, indicating that no amine groups are present.
Next, cleave the new Fmoc group with 20% 4-methylpiperidine in DMF and wash the beads with 10-mL portions of DMF. Repeat the coupling and deprotection for each remaining amino acid in the target peptide.
After the last amino acid has been deprotected and the resin beads have been washed, add 40 mL of peptide cleavage solution to separate the peptide product from the resin.
Bubble nitrogen gas through the resin mixture for 3 h, and then replace the receiving flask. Transfer the solution from the resin mixture to the new receiving flask under vacuum.
To generate the final product, remove the solvent with a rotary evaporator.
Solid phase synthesis is widely used in biology and chemistry. Let’s look at a few examples.
Solid-phase synthesis opened many new synthetic pathways to oligosaccharides, which are short chains of simple sugar monomers with important biological roles, such as energy storage. Unlike peptide bonds, each bond between sugars contains a stereocenter. To synthesize an oligosaccharide, not only must the monomers be in the correct order, but the bonds must also have the correct stereochemistry. Solid-phase synthesis techniques were developed to couple each monomer by a highly stereoselective process, which today is sufficiently refined to be automated.
Solid-phase synthesis is a common approach to combinatorial chemistry, which is the practice of synthesizing many variants of a compound in a single synthetic process. The loaded resin can easily be split into portions to react with different monomers or molecules. After each reaction, the portions are washed and recombined. This is repeated until the desired number of products has been generated. This technique is particularly useful in pharmaceutical research, as it can be used to generate new compounds or to evaluate the reactivity of a compound with a wide array of molecules.
You’ve just watched JoVE’s introduction to solid phase synthesis. You should now understand the underlying principles of solid phase synthesis, the procedure for solid phase peptide synthesis, and a few examples of how solid phase synthesis is used in organic chemistry. Thanks for watching!
Related Videos
Organic Chemistry II
123.6K 浏览
Organic Chemistry II
99.6K 浏览
Organic Chemistry II
43.1K 浏览
Organic Chemistry II
149.1K 浏览
Organic Chemistry II
47.8K 浏览
Organic Chemistry II
100.3K 浏览
Organic Chemistry II
67.0K 浏览
Organic Chemistry II
16.7K 浏览
Organic Chemistry II
34.4K 浏览
Organic Chemistry II
41.1K 浏览
Organic Chemistry II
49.6K 浏览
Organic Chemistry II
94.1K 浏览
Organic Chemistry II
149.9K 浏览
Organic Chemistry II
215.0K 浏览
Organic Chemistry II
100.0K 浏览