熔点

Melting Point
JoVE Science Education
Organic Chemistry II
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Organic Chemistry II
Melting Point

149,885 Views

05:12 min
February 22, 2017

Overview

资料来源: Vy 先生和1月的里德尔, 加州大学欧文分校化学系

水晶固体的最重要的特性之一是它的熔点。它可用于确定已知化合物的纯度, 并提供有关所形成晶体的稳定性的重要信息。

Principles

固体主要可以在有序结构 (晶体固体) 或无序结构 (无定形固体) 中找到。水晶固体将在晶格中组织自己。从晶格中除去原子或分子需要能量。因此, 将原子或分子从结晶固相转移到液相, 就会以热能的形式产生能量。熔点是指从晶格中除去原子或分子所需的热能形式的能量量。

并非所有的分子都能在一个晶格中结晶。一些有机分子是已知的结晶在不同的晶格, 在能源相似。这些固体被称为变形, 因为它们没有定义的熔点, 而是固体熔化的温度范围。

另一个能影响熔点的因素是杂质。在大多数情况下, 样品的熔点在含有杂质时会减少。因此, 测量熔点可以给出一个已知样品纯度的定性指标。

测量熔点需要一个特殊的设备, 主要是一个铜块, 可以通过电子加热。温度可取自电子传感器或温度计。

Procedure

1. 样品制备

  1. 采用特殊的玻璃毛细管, 适合使用的熔点仪。
  2. 将毛细管的开口端浸入苯甲酸的样品中
  3. 轻轻地在坚硬的表面上敲击玻璃毛细管, 就像一张桌子, 这样苯甲酸就会向下移动到玻璃毛细管的底部。

2. 测量熔点

  1. 将玻璃毛细管插入熔化点装置。
  2. 加热该装置的速率为10° c/分钟, 直到接近预期熔点。
  3. 降低比1° c/分钟的速度, 并密切观察样品。
  4. 记录的温度时, 样品开始融化, 当它完全熔化。

熔点, 固体熔化的温度, 是表征固体有机化合物的一个有用的特性。

这项技术是通过观察温度, 或气温的范围, 在一个固体融化。然后, 可以通过与已发布的数据进行比较来确定纯度和身份。

这个视频将说明熔点的原理, 它的测量, 及其应用。

固体相是物质的基本状态, 它的组分由大有吸引力的力量紧合在一起。固体可以根据它的组分的安排进一步被分类: 无定形的固体是无序的, 而水晶固体被组织入晶格结构。为了熔化固体, 能量, 通常以热的形式, 必须提供克服分子间的力量保持它的结构一起。

当固体被加热时, 温度最终会上升到熔点。对于纯化合物, 这是固体和液相共存的热力学条件。在这种温度下, 增加更多的能量会导致分子离开固相, 进入液相, 否则称为熔化。

由于熔点是一个化学热力学性质, 公布的化学和热力学数据可以用来帮助识别未知化合物。应该注意的是, 对于某些有机化合物, 熔化发生在大约1到2摄氏度的范围内。

另一个影响熔点的因素是溶解杂质的存在, 它们不适合纯化合物的晶格, 扰乱了它的有序性。这一现象导致熔融范围的扩大和熔点的降低, 使熔点测定成为定性测定纯度的好方法。

熔点是用可以电子控制的加热块和温度计来测量温度。固体被放置在毛细管, 加热和观察, 熔化开始和完成的温度记录。

一旦熔化点被知道, 它可以用来阐明有关的身份和纯度的样品的信息。这种方法是一种快速方便的方法, 以消除考生之前使用更严格的方法, 如 IR 光谱学。

现在, 我们已经看到了这个理论, 让我们来看看一个程序, 我们将演示如何测量苯甲酸的熔点。

首先, 收集样品和玻璃毛细管, 并把它们带到熔点仪。确保设备已通电。

采用熔点毛细管, 将管的开口端浸入样品中。然后, 在坚硬的表面上敲击毛细管。这是必要的收集样品在封闭端的管。

然后, 将毛细管插入熔化点装置。快速加热样品, 直至达到预期熔点。

最后, 将加热速率降低到每分钟1摄氏度, 并仔细观察样品。记录的温度时, 样品开始融化, 当它完全熔化

现在我们已经讨论了如何测量固体有机化合物的熔点, 让我们来看看一些应用。

熔点也可以用来识别液体。酒精可以通过第一酯与4硝基苯甲酸鉴别。通过将所测熔点与已公布的4硝基苯甲酸酯衍生物的热力学数据进行比较, 可以将该酯的熔点用于识别酒精。

固体脂质纳米微粒是一种用于靶向治疗的药物载体。该应用用于表征纳米颗粒的热行为, 包括其熔点。这种热分析揭示了纳米颗粒的结晶, 这是影响药物传递和剂量的一个重要因素。

你刚刚看了朱庇特介绍的熔点。你现在应该了解熔点, 它是如何测量的, 以及它的应用。谢谢收看!

Results

纯净苯甲酸的样品将熔化在122° c。

Applications and Summary

熔点是结晶固体的重要性质。它可以很容易地测量, 并提供有关的身份和纯度的信息, 以及在晶格内的结合强度。

由于其简单的决心, 熔点仍然是一个重要的属性, 通常用于识别化合物和合格的纯度。熔点不仅可用于识别固体, 还可用于异丙醇等液体。通过衍生的异丙醇与4硝基苯甲酸对其相应的酯, 衍生物成为定义固体与熔点, 现在使识别。

Transcript

Melting Point, the temperature at which a solid melts, is a useful property for characterizing solid organic compounds.

This technique is performed by observing the temperature, or range of temperatures, at which a solid melts. Purity and identity can then be determined by comparing to published data.

This video will illustrate the principles of melting point, its measurement, and its applications.

The solid phase is a fundamental state of matter, where its components are held close together by large attractive forces. Solids can be further classified by the arrangement of it constituents: amorphous solids are unordered, while crystalline solids are organized into a lattice structure. To melt a solid, energy, usually in the form of heat, must be provided to overcome the intermolecular forces that hold its structure together.

When a solid is heated, the temperature will eventually increase to its melting point. For a pure compound, this is the thermodynamic condition where solid and liquid phases coexist. At this temperature adding more energy results in molecules leaving the solid phase and entering the liquid phase, otherwise known as melting.

Since the melting point is a thermodynamic property of a chemical, published chemical and thermodynamic data can be used to help identify an unknown compound. It should be noted that for some organic compounds, melting occurs over a range of approximately 1 to 2 degrees Celsius.

Another factor that affects melting points is the presence of dissolved impurities that do not fit into the crystal lattice of a pure compound and disrupts its ordering. This phenomenon results in the broadening of melting range and lowering of the melting point, making melting point determination a good method to qualitatively determine purity.

Melting points are measured using a heating block that can be electronically controlled, and a thermometer to measure temperature. The solid is placed in a capillary tube, heated and observed, the temperatures at which melting begins and completes are recorded.

Once the melting point is known, it can be used to elucidate information about the identity and purity of a sample. This method is a quick and convenient way to eliminate candidates before using more rigorous methods like IR spectroscopy.

Now that we’ve seen the theory, let’s look at a procedure where we will demonstrate measuring the melting point of benzoic acid.

First, collect the sample and glass capillary tubes, and bring them to the melting point apparatus. Ensure the apparatus is powered on.

Using a melting point capillary tube, dip the open end of the tube into the sample. Then, tap the capillary tube on a hard surface. This is necessary to collect the sample at the closed end of the tube.

Next, insert the capillary tube into the melting point apparatus. Rapidly heat the sample until the expected melting point is approached.

Finally, reduce the heating rate to 1 degree Celsius per minute and observe the sample closely. Record the temperature when the sample starts to melt and when it’s completely molten

Now that we have covered how to measure the melting point of a solid organic compound, let’s look at some applications.

Melting points can also be used to identify liquids. An alcohol can be identified by first esterifying with 4-nitrobenzoic acid. The melting point of the ester can be used to identify the alcohol by comparing the measured melting point with published thermodynamic data for 4-nitrobenzoic acid ester derivatives.

Solid lipid nanoparticles are a drug delivery vehicle designed for targeted treatments. In this application is used to characterize the thermal behavior of nanoparticles including its melting point. This thermal analysis reveals crystallinity of the nanoparticles, which is an important factor that affects drug delivery and dose.

You’ve just watched JoVE’s introduction to melting point. You should now understand melting point, how it’s measured, and its applications. Thanks for watching!

Tags