资料来源:加州圣地亚哥州立大学航空航天工程系何塞·罗伯托·莫尔托和刘晓峰
低速风洞是研究飞机空气动力学特性、评价飞机性能和稳定性的宝贵工具。使用DC-6B飞机具有可拆卸尾部和6组分外部空气动力学力平衡的刻度模型,我们可以测量提升系数(CL)、阻力系数(CD)、俯仰力矩系数(C)M),以及带尾部和无尾的模型飞机的偏航力矩系数(CN),并评价尾部对空气动力学效率、纵向稳定性和方向稳定性的影响。
本演示采用空气动力学力平衡测量方法,对飞机空气动力学特性、飞行性能及稳定性进行了分析。该方法广泛应用于航空航天工业和飞机和火箭研制研究实验室。本文对不同流况和配置的DC-6B飞机模型进行了分析,并在发生突然变化时对其行为进行了分析。
为了评估空气动力学特性,在给定的飞行条件下,确定空气动力学系数相对于飞机姿态的变化非常重要,即攻击角度、偏航角度和滚动角度。空气动力学力平衡是一种广泛使用的方法,用于直接测量模型所体验的力和力矩。从测得的力和力矩,以及气流温度、静态压力和总压力,可以获得多个攻击角度和偏航角度的空气动力学系数。
只要满足动态相似性条件并应用适当的修正,就可以通过测试小型模型来获得全尺度物体的空气动力学特性。在不可压缩的稳定流的情况下,相关的相似性参数是基于适当的参考长度的雷诺数。
对于低速飞机,如DC-6B,空气动力学特性可以在小型低速风洞中测量,因为在相同的飞行条件下,可以匹配雷诺数。在这些条件下,人们可以获得阻力和提升对攻击角度的依赖性,α。这种对alpha的依赖可以用来评估飞机的性能。
一旦空气动力学系数被测量为多个条件和配置,例如使用两个不同的尾部几何形状,稳定性导数(dCM/d_, dCN/d+), 提升斜率 (dCL/d_),最大提升系数,最大升压比,以及其他空气动力学特性。从这些空气动力学系数中,可以确定改装或设计选择对飞机稳定性和性能的影响。
稳定性导数指示飞机是稳定还是不稳定。例如,如果飞机的攻击角度因阵风而突然增加,则飞机的反应将保持其稳定性。如果攻击角度继续无限上升,据说飞机是不稳定的。然而,如果攻击角度回到其初始值,阵风前的姿态,飞机据说是稳定的。方向稳定性也是如此;如果飞机在突然变化后返回初始偏航角度,则飞机的方向是稳定的。
在本演示中,将介绍风洞中力和力矩测量的空气动力学力平衡。为了消除支撑支柱的贡献和模型的重量,平衡将被焦油,以确保空气动力和力矩的最终结果只由飞机产生。此外,该演示还说明了尾部在传统飞机设计中的影响及其在纵向和横向飞机稳定性中的重要性。
空气动力学力平衡上的 DC-6B 模型设置如下所示。
图 1.安装的 DC-6B 型号。A) 直流-6B模型在低速风洞测试部分内,具有外部空气动力学平衡。B) DC-6B 型号安装在天平上,由三个铰接点安装。还有一个偏航角度控制电机、俯仰控制电机和一个电子电平来校准螺距角度。
图 2.低速风洞控制面板。在风洞运行的测试过程中,可以从面板以电子方式控制俯仰角和偏航角度。
1. 设置校准
2. 在非零风速下进行测试
为了在三个维度上操作飞机,我们必须能够控制其姿态或方向,在三个维度上。因此,我们定义三个主轴来描述飞机的位置和对飞机所做的任何更改。这三个轴的起源位于飞机的重心,这是其质量的平均位置。
偏航轴垂直于飞机的机翼,描述其从一侧到一侧的运动。间距轴与翼方向平行,垂直于偏航轴。俯仰运动是鼻子的上下运动。最后,滚动轴运行飞机的长度,并描述机翼的垂直运动。
为了评估飞机在这些方向位置变化时的空气动力学特性,我们可以测量几个描述提升、阻力和力矩的不同系数。提升系数和阻力系数是无尺寸值,使我们能够对形状和流在提升和拖动上的复杂影响进行建模。
提升系数和阻力系数如下图所示,其中 L 和 D 是提升和拖动,S 是飞机模型的参考区域。Rho 和 V 是自由流的密度和速度。我们可以简化 rho V 平方超过两到动态压力,q。
同样,工程师测量俯仰力矩系数,这是一个无尺寸值,用于描述飞机上的力在俯仰轴方向上产生的扭矩,称为俯仰力矩。
与提升系数和阻力系数一样,俯仰力矩系数的定义如下,其中 M 是俯仰力矩,q 是动态压力,S 和 C 是飞机的参考区域和参考长度。
最后,我们可以测量偏航力矩系数,该系数描述了偏航轴方向产生的扭矩。此系数定义为所示,其中 N 是偏航矩,B 是飞机上的翼展。
工程师使用这些系数来研究飞机的性能和稳定性。与螺距或偏航角有关的稳定性导数表明飞机是稳定还是不稳定。
例如,如果攻击角度 alpha 突然被阵风增加,飞机的反应将决定其稳定性。如果攻击角度持续增加,飞机是不稳定的。这由正稳定性导数显示,表明间距矩系数继续随 alpha 增加。
偏航角贝塔的方向不稳定性也是如此,偏航角贝塔为负稳定性系数。如果攻击角度或偏航角度返回到其初始值,则飞机被认为是稳定的。这反映在稳定性导数中,后者与不稳定条件相反。
在本实验中,我们将检查模型飞机,因为它暴露在不同音高和偏航角度的气流中,并确定其尾部和无尾机的稳定性和性能。
在本实验中,我们将检查模型飞机,因为它暴露在不同音高和偏航角度的气流中,并确定其尾部和无尾机的稳定性和性能。
对于此实验,您需要使用具有力平衡的空气动力学风洞,该风洞控制攻击角度(也称为俯仰角)和实验期间外部偏航角度。您还需要一个DC-6B飞机模型,使用支柱连接到力平衡。
首先,锁定外部平衡并将支柱安装在天平上,单独分析支柱的影响,以便从飞机测量中减去它们。通过调整偏航电机旋钮将偏航角度设置为 0。
现在打开计算机并打开数据采集系统进行外力平衡。在测试前让系统预热 30 分钟。
系统预热后,打开数据采集软件。阅读室压和温度,并将这些值记录在笔记本中。使用汞气压计附带的气压计,校正气压。
现在,请确保测试部分和风洞没有碎屑和松动部件。然后关闭测试部分门。解锁外部平衡。然后将风洞速度拨号设置为 0。打开风洞和风洞冷却系统。记录平衡力和时刻与风速在0。
现在,使用偏航控制将偏航角度调整到 5°。然后在 0 级风速下再次记录平衡力和时刻。以 10° 的偏航角度和零风速再次重复这些测量。现在将偏航角度设置回 0,然后将动态压力设置为 7 英寸的水。然后再次记录平衡力和时刻。
现在,将偏航角度设置为 5°,如有必要,将动态压力调整回 7 英寸的水,然后记录平衡力和力矩。以 10° 的偏航角度重复相同的测量,如有必要,将动态压力重置回 7 英寸的水。记录测量值后,将偏航角度返回零,然后关闭风洞。
要开始校准 DC-6B 型号飞机,首先锁定外部天平并打开测试部分。然后安装带尾部的 DC-6B 型号。使用电子电平校准俯仰角度,并根据需要进行调整到零。
关闭测试部分门后,解锁外部平衡,按下鼻子向下按钮将俯仰角度设置为 -6°。现在,记录平衡力和时刻与风洞关闭,以获得必要的校正,以考虑模型的重量。
将俯仰角度更改为 -4°,并像以前那样重复力和力矩的测量。以 2° 的增量对高达 10° 的攻击角度进行测试。然后,将俯仰角度返回零。现在对偏航角度 0、5 和 10° 进行相同的测试。测试所有角度后,锁定外部天平,打开测试部分,并拆下 DC-6B 型号尾部。
然后安装尾锥,以便我们可以测量模型重量贡献与风洞关闭。现在关闭测试部分,将偏航角度设置为零,并记录所有螺距角度的力和力矩测量值,从 -6 到 10°,与之前一样。
完成这些测量后,以 3 个偏航角度 0 再次重复测试。完成后,锁定外部余额。
现在,我们将以非零风速进行实验。首先,检查测试部分有无碎屑和松动部件。然后,关闭测试部分门。
接下来,将俯仰角度设置为零并解锁外部平衡。将风洞速度拨盘设置为零,然后打开风洞。在打开气流之前,记录平衡力和时刻。现在打开气流,动态压力等于 7 英寸的水。然后,将俯仰角度设置为 -6°,并根据需要将动态压力调整回 7 英寸的水,然后记录此设置的平衡力和力矩。
对校准步骤中测试的每个螺距角度重复测量。然后,将音高和偏航角度返回至零。如果需要,请再次调整动态压力,然后记录平衡力和力矩。与之前一样,重复校准期间测试的偏航角度的测量。
进行所有测量后,缓慢地将空气速度降至零。现在锁定外部余额并打开测试部分。拆下 DC-6B 尾锥并安装整个尾部。然后关闭测试部分,重复以前测试的风洞动态压力为 7 英寸的水的所有螺距角度和偏航角度的测量。
在本实验中,我们获得了DC-6B飞机型号在两种配置中的性能和稳定性特性,传统飞机尾部和尾部被移除。
对于每种配置,调整测量力以减去模型关闭的力来去除支柱的重量,并在模型关闭和风上关闭时从力中清除。
然后,通过减去带模型的力,从打开模型和风的力中减去力,消除模型权重的影响。然后,通过从模型的重量调整力中减去支柱的重量调整力来消除支柱的空气动力学效果。
使用这些调整力,我们可以使用这些方程计算提升系数和阻力系数。在这里,L是提升,D是阻力,这是在实验中测量的。S 是模型参考区域,q 是动态压力。
现在,如果我们根据俯仰角度绘制提升和拖动系数,我们可以看到飞机上的尾部会增加最大提升,但尾部也会增加阻力。接下来,让我们来看看投球矩系数。投球时刻,M,在我们的实验中被测量。
然后,我们将根据间距角度绘制间距矩系数。请记住,如果音高时刻随着攻击角度的增加而增加,飞机就会不稳定,因为它无法返回水平方向。但是,如果音高矩随着攻击角度的增加而减小,则音高矩的作用是防止音高角度无限增加或减小;从而确保飞机的稳定性。
对于尾部关闭配置,螺距系数随螺距角度的增加而增加,表明飞机在此配置中不稳定。另一方面,配置上的尾部表现出相反的行为,其中螺距系数随着螺距角度的增加而减小,表明尾部增加了飞机的稳定性。
同样,我们将计算偏航矩系数。偏航时刻,N,在我们的实验中被测量。在这里,我们显示了偏航矩系数与偏航角度的图解。
对于方向稳定性,正侧滑动角度 beta 表示飞机机头指向运动方向的左侧,如果 beta 为负,则指向右侧。偏航矩系数向右为正,左侧为负。
但是,如果偏航矩随着 beta 的增加而减小,就像尾部关闭配置一样,飞机不会返回零 beta 位置且不稳定。因此,我们可以得出结论,飞机尾部是实现稳定性所必需的,即使它会导致一些性能降低。
总之,我们了解了飞机的空气动力学特性是如何通过提升、阻力和力矩系数来描述的。然后,我们测量了DC-6B型飞机在风洞中经历的空气动力学力,以分析其飞行性能和稳定性。
在本演示中,测量了DC-6B型号在两种配置中的性能和稳定性特性。在一种配置中,传统的飞机尾部被连接到模型(尾部),在第二个配置中,尾部被移除,代之以圆锥体(尾部关闭)。对于每种配置,确定提升系数和阻力系数与攻击角度的变化(图3)。研究了距攻击角和β的角度的俯仰矩系数和偏航矩系数的变化(图4)。
结果表明了尾部的空气动力学效应。在图 3 中,虽然尾部增加了最大提升和阻力,但整体尾部会降低空气动力学性能。当尾部关闭时,模型纵向和方向不稳定(图 4)。因此,飞机尾部是实现稳定性所必需的,即使它可能导致飞机性能下降。
图 3.尾部和尾部配置的性能评估曲线。A) 提升系数与 α;B) 拖动系数与 +;C) 拖动极性;和 D) L/D vs *请点击此处查看此图的较大版本。
图 4.用于尾部和尾部配置的性能评估曲线。A) 间距矩系数与 α;B) Yaw 矩系数与α. 请点击此处查看此图的较大版本。
在风洞中使用空气动力学平衡测试小型模型,可以确定飞机的主要空气动力学特性。6 组分平衡测量三个力组件、提升、拖动和横向力,以及三个力矩组件、俯仰力、偏航力矩和滚动力矩。
当达到满量程物体与模型之间的动态相似性时,例如,对于不可压缩的稳流情况下,雷诺数相同,则使用小尺度模型获得的空气动力学系数适用于可以确定全尺度物体和空气动力学特性,如性能和静态稳定性。
风洞中外部平衡的力和力矩测量具有多种应用。该方法在航空航天工业中有着广泛的应用;然而,它已成功应用于许多领域的研究和开发,例如海军工程、汽车工业和土木工程。
海军工程有多种应用。例如,帆船和赛艇受到空气动力学力的显著影响,需要考虑它们对船只的影响,以优化性能。对于低速船舶设计,应考虑空气动力学力,以降低油耗并提高整体性能。
另一个受益于风洞测试的行业是汽车行业。风洞测试用于确定汽车的阻力、横向力和瞬间。现在,这是开发新车的标准做法,因为这种技术带来了更具竞争力和高效的设计。
力测量的风洞测试并不限于性能优化。在现代土木工程行业,风洞试验用于提高安全性。有高而细长的摩天大楼,受到强风的侵袭。这些阵风产生高负荷,需要在建筑设计中考虑,以避免建筑物倒塌。这也适用于桥梁,必须在风洞中进行测试以确保安全。
材料列表:
名字 | 公司 | 目录号 | 评论 |
设备 | |||
低速风洞 | SDSU | 速度在 0-180 mph 范围内的闭合回音类型 测试部分尺寸 45W-32H-67L 英寸 |
|
DC-6B 全型号 | SDSU | 参考区域 = 93.81 in2 平均弦长度 = 3.466 in 跨度 = 27.066 in 纵横比 = 7.809 瞬时参考 Z 距离 (in) = 0* 瞬时参考 X 距离 (in) = 0* |
|
外部空气动力学力平衡 | SDSU | 6 组分、称重传感器、应变片类型平衡系统具有以下负载限制。 提升 = 150 磅;拖动 = 50 磅;侧力 100 磅;间距 1000 磅-;滚 1000 磅入;Yaw 1000 磅-IN. |
|
数字服务模块 | 斯坎尼瓦尔 | DSM4000 | |
晴雨表 | |||
马诺米特 | 梅里安仪器公司 | 34FB8 | 水操纵仪,10 英寸范围。 |
温度计 |
In order to operate an aircraft in three dimensions, we must be able to control its attitude, or orientation, in three dimensions. Thus, we define three principal axes to describe an airplane’s position and any changes made to it. The origin of these three axes is located at the aircraft’s center of gravity, which is the average location of its mass.
The yaw axis is perpendicular to the aircraft’s wings and describes its motion from side to side. The pitch axis is oriented parallel to the wing and perpendicular to the yaw axis. Pitch motion is the up and down motion of the nose. Finally, the roll axis runs the length of the aircraft and describes the vertical movement of the wings.
To evaluate the aerodynamic characteristics of an aircraft as it changes position in these directions, we can measure several different coefficients that describe lift, drag, and moment. The lift and drag coefficients are dimensionless values that enable us to model the complex effects of shape and flow on lift and drag.
The lift and drag coefficients are defined as shown, where L and D are lift and drag, and S is the reference area of the aircraft model. Rho and V are the density and velocity of the free stream. We can simplify rho V squared over two to the dynamic pressure, q.
Similarly, engineers measure the pitching moment coefficient, which is a dimensionless value that describes the torque produced by forces on the aircraft in the direction of the pitch axis, called the pitching moment.
Like the lift and drag coefficients, the pitching moment coefficient is defined as shown, where M is the pitching moment, q is the dynamic pressure, and S and C are the reference area and reference length of the aircraft.
Finally, we can measure the yaw moment coefficient, which describes the torque produced in the direction of the yaw axis. This coefficient is defined as shown, where N is the yaw moment, and B is the wingspan on the aircraft.
Engineers use these coefficients to study aircraft performance and stability. The stability derivatives, taken with respect to the pitch or yaw angles, indicate whether the aircraft is stable or unstable.
For example, if the angle of attack, alpha, is suddenly increased by a wind gust, the aircraft’s response determines its stability.If the angle of attack keeps increasing indefinitely, the aircraft is unstable. This is shown by a positive stability derivative, showing that the pitching moment coefficient continues to increase with alpha.
The same is true for directional instability with respect to yaw angle beta, which gives a negative stability coefficient. If the angle of attack or yaw angle return to their initial values, then the aircraft is said to be stable. This is reflected in the stability derivatives, which are opposite to the unstable conditions.
In this experiment, we will examine a model aircraft as it is exposed to airflow at different pitch and yaw angles and determine its stability and performance with and without its tail.
In this experiment, we will examine a model aircraft as it is exposed to airflow at different pitch and yaw angles and determine its stability and performance with and without its tail.
For this experiment, you’ll need to use an aerodynamic wind tunnel with a force balance that controls the angle of attack, also called the pitch angle, and the yaw angle externally during the experiment. You’ll also need a DC-6B aircraft model that attaches to the force balance using struts.
To begin, lock the external balance and install the struts on the balance to analyze the effects of the struts alone, so they can be subtracted out of the airplane measurements. Set the yaw angle to 0 by adjusting the yaw motor knob.
Now turn on the computer and turn on the data acquisition system for the external force balance. Allow the system to warm up for 30 min prior to testing.
Once the system has warmed up, open the data acquisition software. Read the room pressure and temperature and record these values in your notebook. Correct the barometric pressure, using the barometer spreadsheet that accompanies the mercury barometer.
Now make sure that the test section and wind tunnel are free of debris and loose parts. Then close the test section doors. Unlock the external balance. Then set the wind tunnel speed dial to 0. Turn on the wind tunnel and the wind tunnel cooling system. Record the balance forces and moments with the wind speed at 0.
Now adjust the yaw angle to 5° using the yaw control. Then record the balance forces and moments again at 0 wind speed. Repeat these measurements again at a yaw angle of 10° and zero wind speed. Now set the yaw angle back to 0 and then set the dynamic pressure to 7 inches of water. Then record the balance forces and moments again.
Now, set the yaw angle to 5°, adjust the dynamic pressure back to 7 inches of water, if necessary, and then record the balance forces and moments. Repeat the same measurements at a yaw angle of 10°, resetting the dynamic pressure back to 7 inches of water, if necessary.After the measurements have been recorded, return the yaw angle to zero, and turn off the wind tunnel.
To begin calibration of the model DC-6B airplane, first lock the external balance and open the test section. Then install the DC-6B model with the tail on. Calibrate the pitch angle using an electronic level and make adjustments to zero if needed.
After closing the test section doors, unlock the external balance, press the nose down button to set the pitch angle to -6°. Now record the balance forces and moments with the wind tunnel off to acquire the correction needed to account for the model’s weight.
Change the pitch angle to -4° and repeat the measurement of the force and moments as before. Conduct the test for angles of attack up to 10° with 2° increments. Then return the pitch angle to zero. Now conduct the same test for the yaw angles 0,5,and 10°. When all of the angles have been tested, lock the external balance, open the test section, and remove the DC-6B model tail.
Then install the tail cone, so that we can measure the model weight contribution with the wind tunnel off. Now close the test section, set the yaw angle to zero, and record the force and moment measurements for all of the pitch angles from -6 to 10°, as before.
Once those measurements are complete, repeat the test again at a pitch angle of0 for the three yaw angles. When complete, lock the external balance.
Now we’ll run the experiment with a non-zero wind speed. To begin, check the test section for debris and loose parts. Then, close the test section doors.
Next, set the pitch angle to zero and unlock the external balance. Set the wind tunnel speed dial to zero, then turn on the wind tunnel. Record the balance forces and moments before turning on the airflow. Now turn on the airflow with the dynamic pressure equal to 7 inches of water. Then set the pitch angle to -6°, and adjust the dynamic pressure back to 7 inches of water, if needed, before recording the balance forces and moments for this setting.
Repeat the measurement for each of the pitch angles tested in the calibration steps. Then return the pitch and yaw angles to zero. Adjust the dynamic pressure again if needed, and then record the balance forces and moments. Like before, repeat the measurements for the yaw angles tested during the calibration.
Once all of the measurements have been taken, slowly decrease the air speed to zero. Now lock the external balance and open the test section. Remove the DC-6B tail cone and install the complete tail. Then close the test section and repeat the measurements for all of the pitch angles and yaw angles tested previously with a wind tunnel dynamic pressure of 7 inches of water.
In this experiment, we obtained performance and stability characteristics of a DC-6B aircraft model in two configurations, with the conventional airplane tail and with the tail removed.
For each configuration, adjust the measured forces to remove the weight of the strut by subtracting the forces with the model off and wind off from the forces with the model off and the wind on.
Then remove the effect of the weight of the model by subtracting the forces with model on and wind off from the forces with the model on and wind on. Then remove the aerodynamic effect of the struts by subtracting the weight adjusted forces of the struts from the weight adjusted forces of the model.
Using these adjusted forces, we can calculate the lift coefficient and drag coefficient using these equations. Here, L is the lift and D is the drag, which were measured in the experiment. S is the model reference area and q is the dynamic pressure.
Now if we plot the lift and drag coefficients against the pitch angle, we can see that the tail on the aircraft increases the maximum lift, but the tail also increases the drag. Next, let’s look at the pitching moment coefficient.The pitching moment, M, was measured in our experiments.
Then, we’ll plot the pitch moment coefficient against the pitch angle. Remember that if the pitch moment increases with increasing angle of attack, the aircraft is unstable, as it is unable to return to level heading. But if the pitch moment decreases with increasing angle of attack, the pitch moment acts to prevent the pitch angle from increasing or decreasing indefinitely; thus, ensuring more stability in the aircraft.
For the tail off configuration, the pitch coefficient increases with the increase of the pitch angle, showing that the aircraft is unstable in this configuration. On the other hand, the tail on configuration exhibits the opposite behavior, where the pitch coefficient decreases as the pitch angle increases, showing that the tail adds stability to the aircraft.
Similarly, we will calculate the yaw moment coefficient. The yaw moment, N, was measured in our experiments. Here we show a plot of the yaw moment coefficient versus the yaw angle.
For directional stability, a positive side slip angle beta means that the aircraft nose is pointing to the left of the direction of motion, and to the right if beta is negative. The yaw moment coefficient is positive to the right and negative to the left.
However, if the yaw moment decreases as beta increases, as it does for the tail off configuration, the airplane does not tend to return to the zero beta position and is unstable. Therefore, we can conclude that the airplane tail is necessary to achieve stability, even though it results in some performance reduction.
In summary, we learned how the aerodynamic characteristics of an aircraft are described by its lift, drag, and moment coefficients. We then measured the aerodynamic forces experienced by model DC-6B airplane in a wind tunnel to analyze its flight performance and stability.
Related Videos
Aeronautical Engineering
8.3K 浏览
Aeronautical Engineering
26.4K 浏览
Aeronautical Engineering
21.1K 浏览
Aeronautical Engineering
13.4K 浏览
Aeronautical Engineering
8.7K 浏览
Aeronautical Engineering
16.2K 浏览
Aeronautical Engineering
37.9K 浏览
Aeronautical Engineering
11.6K 浏览
Aeronautical Engineering
8.1K 浏览
Aeronautical Engineering
4.9K 浏览
Aeronautical Engineering
48.8K 浏览
Aeronautical Engineering
7.2K 浏览
Aeronautical Engineering
8.5K 浏览
Aeronautical Engineering
10.2K 浏览
Aeronautical Engineering
9.1K 浏览