酶标仪是一种可用于同时进行和测量多种实验的多模式仪器。酶标仪可以测量光吸收、物理荧光和化学荧光。多孔板和酶标仪的配合使用可使得一次同时完成多个实验。无论进行哪种类型的分析,使用酶标仪的实验都是通过一个标准曲线来得出实验数据。这个曲线是根据一系列已知浓度的样品来建立一个最佳的吻合线或标准曲线。然后根据标准曲线来推断实验数据或者根据线性回归得到的公式来计算数据。在多孔板上除了标准样品和实验样品,还有空白对照、正对照和负对照。它们是用来保证分析过程的正确。酶标仪可用来定量蛋白质、基因表达以及不同的代谢过程,例如活性氧类和钙流动。
酶标仪是一种应用广泛的仪器,它可以同时测量许多样品,就好像在同一时间进行很多小型实验。
这种仪器与多孔板,如96孔板结合使用。
无论在酶标仪内进行哪种实验,通常都要用到标准曲线来得到实验样品的数值,也包括正负对照的数值。
酶标仪有不同的形状、大小和设置。许多酶标仪都有多种模式,允许进行许多不同的分析。这些模式包括不同类型的测量,例如测定光吸收、物理荧光和化学荧光。
多孔板是酶标仪的一个部分,用于盛放要进行测量的样品。这些多孔板可以是不同的大小,不同的孔底部类型,以及不同的孔数。如何选取多孔板取决于分析类型的需要。
托盘用于将96孔板送进酶标仪。
通常用一个计算机界面来操作酶标仪,并控制它的设置和参数,例如波长和模式。酶标仪软件有一个图表式的用户界面来显示多孔板,这样您可以选择哪些孔有盛放实验样品。
多道移液器通常用于上样多孔板。溶液槽用来盛放多道移液器将上样的溶液。有时也会使用单道移液器来上样。
实验样品和标准样品通常要上样两个或三个重复,来避免移液中产生的误差。这里您看到的是在板中上样了三个重复。
标准曲线采用的是已知浓度的样品,它们产生不同的光吸收值。这些吸收值将会用于绘制一个最吻合线的标准曲线图。
空白对照用于确定与实验无关,仅来自于稀释缓冲液本身的测量值。这些数值被称之为本底。空白对照不含任何实验样品。
正对照用于确定分析过程是否正确。它会给出一个好结果。负对照则是一个对照值,应该检测不到任何数值或变化。它不应当有任何读取结果。
多孔板准备好后,就可以放入酶标仪中。为防止样品测量错误或多孔板放入方向错误,要注意将孔板以正确的方向摆放在托盘里。并且也不要用力将托盘推入或拉出酶标仪。
托盘放置好后,读板前在软件上设置好仪器参数,如模式、波长、和孔上样顺序。
参数设置好之后,开始读板,然后软件会产生酶标仪读出的数值。
读板之后,计算空白对照的平均值作为本底,从包括标准曲线样品在内的所有实验样品的读数中减去这个本底值。
读取数值后,标准样品的已知浓度和各自对应的测量值,也就是这里的光吸收值会被用来作图。作图时,采用线性回归来计算最佳的标准曲线。这个可以很容易用制表软件得到。
决定系数,在统计学上用来表明标准曲线是否能够准确预测数据点。它应该在0.90到0.99之间,0.99被认为是最佳数值,表明标准曲线能够准确反映数据。
使用最佳的标准曲线,我们能够计算每个孔的实验样品或者对照样品的浓度值。计算方法是将光吸收值设为Y,而后通过公式推导,得到浓度值X。浓度值还可以这样推导:在Y轴上找出光吸收值,而后划线到标准曲线,再向下划线到X轴得到浓度值。
许多类型的酶标仪测定的是光吸收值。所谓光吸收值指的是:被物体吸收的光和透过物体的光的比值的对数。
例如Bradford检测,就是一种读取光吸收的酶标仪检测法。蛋白质样品先和Bradford试剂混合,然后加到多孔板上。这种试剂可以和样品中的蛋白质结合,而后改变光吸收的峰值。
在读取物理荧光的检测中,荧光染料先被特定波长的光来激活,然后荧光染料进入激发状态,释放出不同波长的光。
使用光敏感试剂时,要保证避光,以避免光漂白而造成实验失败。
化学荧光检测是通过化学反应发光,通常要用到荧光素酶。荧光素酶的来源有很多种,例如萤火虫。在荧光素酶反应中,当荧光素酶遇到氧、ATP和镁离子,就会发出化学荧光。
化学荧光检测有许多不同的应用。例如,它可用于检测肿瘤中活性氧的产生和类型。
酶标仪的其它应用还包括使用384孔板和1536孔板的高通量分析。在这些检测中,多孔板是通过机器人来装载。它不是通常意义上的机器人,而是一种被程序设定、来非常精确地操作实验样品的自动仪器。
您刚观看的是JoVE对酶标仪的简介。本短片中我们演示了:什么是酶标仪;如何使用;如何操作;如何阐释酶标仪的数据以及酶标仪的一些应用。
感谢您的观看。
The microplate reader is a widely-used instrument that allows for many samples to be simultaneously measured, as if many miniscule experiments were being performed at the same time.
This apparatus is used in conjunction with multiwell plates, like the 96 well plate.
Regardless of the type of experiment run with the microplate reader, standard curves are often used to determine the value of experimental samples, as well as positive and negative controls.
Microplate readers come in different shapes, sizes and set-ups. Many microplate readers have multimodal capabilities allowing for many different assays to be performed. These modalities include the ability to perform different types of measurements, such as absorption, fluorescent, and luminescent measurements.
Multiwell plates are integral components to the microplate reader and are used to hold the samples that are measured by the machine. These plates can be different sizes, have different types of well bottoms and different numbers of wells. The type of plate used depends upon the assay.
The loading tray is used to bring the 96-well plate into the machine.
A computer interface is typically used to operate the plate reader and control its settings and parameters, such as the wavelength and mode. The plate reader software has a graphical user interface of the plate that allows you to select which wells are loaded with samples.
Multichannel pipettes are often used to load multi-well plates. The reservoirs hold the solutions for the multichannel pipette.
Wells can sometimes be loaded using a standard single channel pipette.
Samples and standards are loaded either in duplicate or triplicate to account for any pipetting errors. Here you see a plate loaded in triplicate.
The standard curve uses samples with known concentrations, which yield different absorbance values. This data is then used to create a graph where a line of best fit is generated.
The blank is used to determine the extent of your measurement that is not experimentally relevant and is due to the buffers in which your sample is diluted or reagents to which your sample is exposed. The values obtained from these measurements are called the “background”. The blank does not contain any sample.
The positive control indicates whether or not the assay has worked properly. It gives a good result. The negative control is a control variable where no measurement/effect is expected to be observed. It should not yield any result..
Once the plate is set up, it’s time to load the samples. To prevent measuring the wrong samples or loading the plate the wrong way, it is critical to orient the plate correctly in the loading tray. Remember to exercise caution when loading samples in the tray, so as not to force the tray into the instrument or catch ones extremities inside the instrument.
Once the tray is loaded, parameters such as the mode, wavelength and well loading order are set in the software before the plate is read.
After the parameters are set, the plate is read, and the reader generates a read-out of values within the software.
Once the plate is read, use the average value of the blank samples to subtract the background from all samples including the standard curve.
After reading, the known concentration values for the standards are plotted against their respective measured values, absorbance in this case.
When the values have been plotted, the line of best fit can be calculated using a linear regression. This can be easily done using a spreadsheet program.
The coefficient of determination, a statistical measure of how well the line predicts actual data points, should be between 0.90-0.99, with 0.99 being considered the best value and signifies that the line fits the data perfectly.
Using the line of best fit, we can calculate the concentration values of experimental samples or controls in each well by plugging in the absorbance value for Y and then solving the equation for X. Concentration values can also be estimated by drawing a line from the absorbance value on the Y axis to the best fit line and then down to the X axis.
Many types of microplate readers measure absorbance, which is defined as the logarithmic ratio of light falling upon an object to the light transmitted through an object.
The Bradford assay is an example of an absorbance-based microplate reader assay, where protein samples are added to the plate with the “Bradford” reagent. This compound binds to the proteins in the sample, and cause a shift in its absorbance.
In fluorescent-based assays, a fluorochrome is activated by a certain wavelength of light and in turn causes excitation of the fluorochrome, which emits light at a different wavelength.
When working with light sensitive reagents, be sure to keep them covered to prevent photobleaching and ruining the experiment.
Luminescent assays emit light via a chemical reaction and often use luciferase. Luciferase comes from a number of sources such as fireflies. In a luciferase reaction, light is emitted when luciferase encounters oxygen, ATP, and magnesium in a series of reactions.
Luminescent assays have many different applications. An example of this application is measuring the production and detection of reactive oxygen species in cancers.
Other applications, which use microplate readers, include high-throughput assays using 384- and 1536-wells. In these assays, plates are loaded by a robot. No, not that kind of robot. A programmable robot which automates extremely precise sample handling.
You’ve just watched JoVE’s introduction to the microplate reader. In this video, we showed what a microlate reader is(A), how it is used(B), how to operate this instrument(C), how to interpret microplate reader data, and some applications using a microplate reader(D). Thank you for watching.
Related Videos
General Laboratory Techniques
487.0K 浏览
General Laboratory Techniques
126.2K 浏览
General Laboratory Techniques
215.6K 浏览
General Laboratory Techniques
211.1K 浏览
General Laboratory Techniques
581.4K 浏览
General Laboratory Techniques
218.9K 浏览
General Laboratory Techniques
206.0K 浏览
General Laboratory Techniques
150.9K 浏览
General Laboratory Techniques
170.7K 浏览
General Laboratory Techniques
517.3K 浏览
General Laboratory Techniques
240.0K 浏览
General Laboratory Techniques
349.7K 浏览
General Laboratory Techniques
814.4K 浏览
General Laboratory Techniques
65.6K 浏览
General Laboratory Techniques
81.2K 浏览