发展是通过其中一个单细胞胚胎转化为多细胞生物的复杂过程。发育过程遵循信息编码的 organism\ DNA 和遗传学家正在试着理解这些信息如何导致完全成形的有机体。
这个视频评论的发育生物学,包括控制各种胚胎过程的特定基因的鉴定领域的开创性研究。此外提供了导论发育遗传学家和突出的方法,用来回答他们,提出的主要问题。最后,几个应用程序,这些突出的方法的论述,为显示当前正在执行在这一领域的具体实验。
每个有机体的发展被引导其 DNA 编码的遗传信息。通过研究基因如何控制发展的过程,例如细胞迁移和分化,发育遗传学领域的科学家们正在试图更好地理解复杂的多细胞生物体结构如何形成。
这个视频将目前的一些主要发现在这一领域,数目由发育遗传学家,主要的工具,科学家们用来回答这些问题,问的基本问题和最后,具体研究了今日正在进行发育遗传学。
让我们首先回顾一些已经形成发育遗传学领域的重要发现。
1865 年,位的奥地利修道士孟德尔用豌豆进行育种实验。他观察到豌豆的可见性状或”表型,”如种子的颜色,继承按照一致的规则。通过提出这些表型进行实际控制的一些无形的、 离散的遗传因素,孟德尔种植的遗传学领域的种子。
这些遗传因素是 1909 年由丹麦植物学家威廉 · 约翰森命名”基因”。然后,在 1910 年,托马斯 · 亨特 · 摩根和他的学生用果蝇作为模式生物来发现基因位于细胞核染色体中的物理结构。
1938 年,莎乐美 Gluecksohn Waelsch 显示一个特定的基因被称为脊索胚胎结构的发展需要。这是基因控制早期发育过程的最早证据之一。
1940 年,康拉德 Hal 沃丁顿提出在胚胎细胞分化沿路径或”命运”,这由基因控制。他制定了一个隐喻为这一进程,精制未来 17 年,被称为”表观遗传的景观”,细胞视作为一个大理石滚下山坡上对不同细胞的命运。路径由细胞随脊和谷的景观,反过来是由基因和其表达模式控制。
1952 年,沃尔夫冈 · Beermann 证实,虽然不同有机体中的细胞具有相同的遗传内容、 不同地区的染色体是活跃的和这个基因差异表达定义单元格标识。
一旦决定基因表达影响发展,接下来的问题是,哪些基因吗?要回答这个问题,在 20 世纪 70 年代,爱德华 B.刘易斯,克丽丝汀 Nusslein-佛尔哈德法和 Eric Weischaus 用于化学品随机突变基因在果蝇。通过这些突变屏幕,科学家发现了大量的基因控制的发展过程的每一步。
2007 年,国际财团的科学家开始着手创建集合的小鼠在其中每一个单一的基因,在每一个鼠标,一个是删除或”淘汰出局”。每个这些小鼠的表型目前被表征,并会给我们第一批目录的所有基因功能的一种哺乳动物。
既然我们已经回顾了根的领域,让我们看看发育遗传学家都试图回答的几个关键问题。
在受精的鸡蛋或受精卵,转化为多细胞胚胎期间,一些研究者们专注早期事件。这些事件取决于 Rna 和蛋白质都存放在蛋中的母亲,在一种现象被称为”产妇贡献”或”母体效应”的影响。科学家们感兴趣学习母亲的基因型对胚胎的表型的影响。
在发育遗传学的另一个中心问题是: 如何做基因完全相同的细胞采用不同细胞的命运?科学家们正在确定控制之间不同的细胞,包括告诉什么基因表达,细胞信号通路和何时来表达它们,在开发过程中的基因差异表达的许多因素。
最后,科学家们也在问,如何从早期的胚胎细胞非晶质,变成一个复杂的有机体,具有独特、 功能部件。这个身体的计划形成称为形态发生,科学家们正试图确定基因和管理这一进程的途径。
现在,你知道一些发育遗传学家都在问的问题,让我们回顾他们用来回答这些问题的技术。
科学家们可以通过破坏他们表达研究特定的基因,在发展中的作用。做到这一种方法是”敲”在生物体的 DNA 基因引入突变,或将它替换为非功能性 DNA。另外,基因的表达可以被”撞倒”引入将绑定到目标 mRNA 序列和防止生产的功能蛋白的寡核苷酸。
要确定哪些基因是负责特定的表型,科学家可以进行遗传屏幕。在转发的遗传屏幕,突变是随机生成的生物通过辐射或化学物质称为诱变剂。当一个突变体发现显示感兴趣的表型时,然后可确定未知的基因的突变。相反的方法是反向遗传屏幕,在那里科学家首先针对大量的具体的候选基因的中断,然后看看结果表型突变体。
最后,生物学家也感兴趣确定不同发育阶段基因表达。为测量基因表达的一个工具是微阵列,是点缀着包含要测试的基因序列的寡核苷酸芯片。在典型的实验中,两个不同发育阶段从生物体中提取的 RNA 用于生成两套不同的荧光标记探针,然后杂交基因芯片。然后可以从每个点在阵列上的荧光信号解释基因表达的变化。
牢记这些实验技术,让我们看看如何研究人员正在应用它们发育遗传学研究。
科学家们正在执行大规模遗传屏幕模式生物,线虫,寻找影响发展的基因。这通常是通过 RNA 干扰或 RNAi,过程藉以基因沉默使用小 RNA 分子。在这里,科学家们喂蠕虫与细菌包含针对大量的蠕虫病毒基因 RNAi 库和基因敲除对动物的发展的影响进行了分析。
其他研究人员正在执行前使用随机突变来识别发展表型的遗传屏幕。在这个实验中,研究人员利用基因诱捕技术进行诱变斑马鱼胚胎,在那里一个记者结构随机针对的是内含子的基因而使他们无法正常工作。科学家们然后可以轻松识别的动物的基因成功地破坏了通过寻找记者信号,和那些表现出一种发育缺陷可以有负责的基因鉴定。
最后,基因表达的不同类型的细胞在发育的生物体可以以貌取人微阵列来确定哪些基因在细胞的分化和专业化过程中打开或关闭。在此研究中,不同的细胞类型的单个神经元细胞株从视网膜发育。然后从这些细胞微阵列分析来识别每个特定的单元格类型的发展中发挥作用的基因提取 RNA。
你刚看了朱庇特的发育遗传学导论。这个视频回顾了一些历史的这一领域,大提问发育遗传学家,几种突出的方法,当前正在使用的实验室和特定的应用程序,则这些方法研究发育生物学亮点。一如既往,感谢您收看 !
The development of every organism is guided by the genetic information encoded in its DNA. By studying how genes control developmental processes, such as cell migration and differentiation, scientists in the field of developmental genetics are trying to better understand how the complex structures of multicellular organisms are formed.
This video will present some of the major discoveries in this field, a number of fundamental questions asked by developmental geneticists, major tools that scientists use to answer these questions, and finally, specific studies being conducted on developmental genetics today.
Let’s begin by reviewing some of the important discoveries that have shaped the field of developmental genetics.
In 1865, an Austrian monk, Gregor Mendel, performed breeding experiments with peas. He observed that the peas’ visible traits or “phenotypes,” such as seed color, were inherited according to consistent rules. By proposing that these phenotypes are actually controlled by some invisible, discrete heredity factors, Mendel planted the seeds of the field of genetics.
These heredity factors were named “genes” by Danish botanist Wilhelm Johannsen in 1909. Then, in 1910, Thomas Hunt Morgan and his students used the fruit fly Drosophila as a model organism to discover that genes are found on physical structures in the cell nucleus called chromosomes.
In 1938, Salome Gluecksohn-Waelsch showed that a specific gene was needed for the development of an embryonic structure known as the notochord. This was among the earliest evidence that genes control early developmental processes.
In 1940, Conrad Hal Waddington proposed that cells in an embryo differentiate along paths, or “fates,” that are controlled by genes. He formulated a metaphor for this process, refined over the next 17 years, called the “epigenetic landscape,” where a cell is seen as a marble rolling down a hillside towards different cell fates. The paths taken by the cell follow the ridges and valleys in the landscape, which in turn are controlled by genes and their expression patterns.
In 1952, Wolfgang Beermann confirmed that while different cells in an organism have the same genetic content, different regions of the chromosomes are active, and this differential gene expression defines cell identity.
Once it was determined that gene expression influences development, the next question was, which genes? To answer this, in the 1970s, Edward B. Lewis, Christiane Nusslein-Volhard and Eric Weischaus used chemicals to randomly mutate genes in fruit flies. Through these mutation screens, the scientists identified a large number of genes controlling every step of the development process.
In 2007, an international consortium of scientists began work on creating a collection of mice in which every single gene, one in each mouse, is deleted or “knocked out.” The phenotype of each of these mice is currently being characterized, and will give us the first catalogue of the function of all genes in a mammal.
Now that we’ve reviewed the roots of the field, let’s look at a few key questions that developmental geneticists are trying to answer.
Some researchers are focusing on the early events during the transformation of fertilized eggs, or zygotes, into multicellular embryos. These events depend on RNAs and proteins that are deposited in the egg by the mother, in a phenomenon known as “maternal contribution” or “maternal effect.” Scientists are interested in learning how a mother’s genotype influences an embryo’s phenotype.
Another central question in developmental genetics is: how do genetically identical cells adopt different cell fates? Scientists are identifying the many factors that control differential gene expression among different cells, including the signaling pathways that tell the cell what genes to express, and when to express them, during development.
Finally, scientists are also asking how does the early embryo, an amorphous mass of cells, transform into a complex organism with distinct, functional parts. The formation of this body plan is called morphogenesis, and scientists are trying to identify the genes and pathways that govern this process.
Now that you know some of the questions that developmental geneticists are asking, let’s review the techniques they are using to answer these questions.
Scientists can study the role of specific genes in development by disrupting their expression. One way to do this is by “knocking out” the gene in the organism’s DNA by introducing mutations, or replacing it with nonfunctional DNA. Alternatively, gene expression can be “knocked down” by introducing oligonucleotides that will bind to the target mRNA sequences and prevent the production of functional proteins.
To identify which genes are responsible for particular phenotypes, scientists can carry out genetic screens. In a forward genetic screen, mutations are randomly generated in organisms by either radiation or chemicals known as mutagens. When a mutant is found to display a phenotype of interest, the unknown gene that was mutated can then be identified. The opposite approach is a reverse genetic screen, where scientists first target a large number of specific candidate genes for disruption, and then look at the resultant phenotypes of the mutants.
Finally, biologists are also interested in determining gene expression at different developmental stages. One tool for measuring gene expression is the microarray, which is a chip dotted with oligonucleotides containing sequences of the genes to be tested. In a typical experiment, RNA extracted from organisms at two different developmental stages is used to generate two different sets of fluorescently labeled probes, which are then hybridized to the microarray. Changes in gene expression can then be interpreted from the fluorescent signal at each dot on the array.
With these experimental techniques in mind, let’s take a look at how researchers are applying them to study developmental genetics.
Scientists are performing large-scale genetic screens in model organisms, such as C. elegans, to look for genes that affect development. This is usually done through RNA interference, or RNAi, a process whereby genes are silenced using small RNA molecules. Here, scientists fed worms with bacteria containing an RNAi library designed against a large number of worm genes, and analyzed the effect of gene knockdown on the animals’ development.
Other researchers are performing forward genetic screens using random mutagenesis to identify developmental phenotypes. In this experiment, researchers used the gene-trap technique to mutagenize zebrafish embryos, where a reporter construct is randomly targeted to introns of genes and render them nonfunctional. Scientists can then easily identify the animals in which the gene is successfully disrupted by looking for the reporter signal, and those that exhibit a developmental defect can have the responsible gene identified.
Finally, the gene expression of different cell types in a developing organism can be profiled by microarrays to identify which genes are turned on or off during cell differentiation and specialization. In this study, single neuronal cells of different cell types were isolated from the developing retina. RNA was then extracted from these cells for microarray analysis to identify genes that play a role in the development of each specific cell type.
You’ve just watched JoVE’s introduction to developmental genetics. This video reviewed some historical highlights of this field, the big questions asked by developmental geneticists, a few of the prominent methods currently being used in labs, and specific applications of these approaches to studying developmental biology. As always, thanks for watching!
Related Videos
Developmental Biology
35.8K 浏览
Developmental Biology
33.3K 浏览
Developmental Biology
20.1K 浏览
Developmental Biology
30.4K 浏览
Developmental Biology
23.6K 浏览
Developmental Biology
64.7K 浏览
Developmental Biology
34.7K 浏览
Developmental Biology
34.4K 浏览
Developmental Biology
25.8K 浏览
Developmental Biology
34.1K 浏览
Developmental Biology
60.6K 浏览
Developmental Biology
8.5K 浏览
Developmental Biology
13.9K 浏览
Developmental Biology
6.0K 浏览
Developmental Biology
20.5K 浏览