资料来源: 实验室的博士安德鲁 J.Steckl — — 辛辛那提大学
扫描电子显微镜、 或扫描电镜,是强大的显微镜用电子来形成图像。它允许在不能使用传统的显微镜的放大倍数的导电样品的成像。现代光学显微镜可以实现一个放大的 ~ 1,000 X,而典型的扫描电镜可以达到放大超过 30,000 X。扫描电镜不用于创建图像的光,因为它形成造成的照片是在黑色和白色。
导电样品放在扫描电镜的样品阶段。一旦样品室达到真空,用户将着手将电子枪对齐到正确的位置系统中。电子枪射出一束高能电子,传播通过透镜和光圈的组合,最终达到样品。由于电子枪继续拍摄电子在样品上的精确位置,二次电子将弹跳的样品。这些二次电子探测器由标识。发现从二次电子信号被放大,并发送到监视器,创建 3D 图像。这个视频会显示扫描电镜样品制备、 操作和成像能力。
通过加热电子枪,哪像阴极产生电子。这些电子被推进向阳极,样品,强电场的方向相同。束电子浓缩后,它进入物镜,校准到由用户在样品上的固定位置。(图 1)
一旦电子罢工导电样品,两件事情可以发生。第一,打样品的主要电子将隧道通过它的深度是依赖这些电子的能量水平。然后,中学和背散射电子将打样品和从它向外反映。这些反映电子是然后测量通过二次电子 (SE) 或背散射探测器 (BS)。在信号处理过程后,样本的图像在屏幕上形成。1
在 SE 模式下,二次电子受到积极偏见的探测器上由于其低能量。信号强度不同样品的角度。因此,SE 模式提供高度地形图像。另一方面,在 BS 模式中,电子转移的方向是几乎直接对面的电子光束方向和检测强度是样品的原子数成正比。因此,它是那么地形,但有用的成分图像。BS 模式也是受样品,有利于非导电样品收费影响较小。1
图 1。SEM 的示意图
1.样品的制备
2.样品插入和扫描电镜启动
3.捕获扫描电镜图像
4.制作用扫描电镜软件测量
扫描电镜观察或扫描电镜,是强大的技术,使用扫描的电子束表面结构和化学成分的样品进行分析的化学和材料分析中使用。
现代光学显微镜与对象,称为衍射的可见光波相互作用受到限制。最小可分辨之间的距离两个对象或横向分辨率,而对象大小的衍射图样的大小而异。因此,光学显微镜有达 1000 X 的最大放大倍率和横向分辨力达 200 毫微米在理想的情况下。
它使用一束电子,而不是光的衍射,不扫描电镜的限制。因此,扫描电镜可以达到亚纳米级横向分辨率达 100 万 X 的放大率。此外,扫描电镜并不限于只在焦平面的影像学特征,用光镜观察。因此,解决焦平面以外的对象,而不是在何处出现模糊的光镜。这提供 300 倍增加景深镜
化学家广泛利用扫描电镜分析表面化学组成、 结构和纳米级的实体,如催化剂颗粒的形状。
本视频将概述的扫描电镜的仪器,原则和证明扫描电镜样品制备和在实验室操作的基础知识。
在扫描电镜,样品必须是导电的常规成像。非导电样品都涂有一层薄薄的金属,如金。通过扫描高能电子聚焦的光束穿过样品,然后生成图像。
电子束扫描电镜用生成的装有钨灯丝阴极电子枪。电子由电场向阳极中的样品,方向推进。
电子束在凝汽器透镜聚焦后,进入物镜。物镜必须校准由用户聚焦电子束在样品上的固定位置上。聚焦的光束是然后光栅扫描整个样品。
当初始电子与示例交互时,他们隧道是依赖电子束能量的深度。这与表面的相互作用导致的中学和背散射电子,然后测定了他们各自的探测器发射。
排放的二次电子信号强度取决于样品的角度。表面垂直于梁释放较少的二次电子,并因此显得更黑。在曲面的边缘,更多的电子被释放和地区出现光明。这一现象产生图像的一个定义良好的 3D 外观,石棉此扫描电镜扫描所示。
相比之下,背散射的电子被反映在电子束相反的方向。检测强度随样品,使表面的成分信息的获取,玻璃中夹杂物的后向散射图中所示的原子序数的增加而增加。
现在,概述了 SEM 文书的原则,将在实验室中证明扫描电镜的基本操作。
首先,通过将它放到示例存根上溅射外套样品。确保样品完全干燥和脱气。如有必要,双面导电碳磁带可能用于坚持到存根 (stub) 样品。将样品放入一个溅射系统。几个纳米到样品上金也难幸免。如果涂层干扰的样品的形态的金层厚度将取决于会发生变化。
从溅射系统删除示例。确保从试样表面到金属的存根 (stub) 导电的桥梁。
样品已被涂抹,一旦,准备映像。要这样做,第一次发泄的扫描电镜样品室和允许会议厅,以达到额定压力。
打开扫描电镜的样品室,并取出样品阶段。放置到样品阶段,存根 (stub) 并拧紧到位存根 (stub)。
如果透镜和样品,所谓的工作距离,之间的距离不能由软件控制,确保阶段和存根 (stub) 有适当的高度,获得图像。
放入样品室,样品阶段和接近车厢。
打开真空泵,泵系统容许下来。
若要开始成像,打开 SEM 软件。选择所需操作电压从 1 — — 30 千伏。用高密度材料,应使用较高的加速电压。选择低加速电压低密度材料。
扫描电镜的大多数软件包括自动对焦功能。这将会获得此示例将使用作为起点的一个焦点。
将缩放比例设置为 50 X 最小缩放级别。
扫描电镜具有快速扫描、 慢扫描等不同的扫描方式。更快的扫描模式提供了更快的刷新率,屏幕具有较低质量。选择要开始,为了找到样品并开始粗集中的快速扫描模式。
调整课程焦点,直到图像变得清晰。接下来,调整阶段定位,所以可以在显示器上看到感兴趣区域。
最初的重点是在使用粗焦点的最低放大倍数。然后,增加放大倍数,直到观察到所需的功能。调整课程焦点大致集中在此放大图像。如有必要,调整粗焦点时放大倍数增加。
然后,调整细焦点进一步改善形象。重复这些重点步骤,每次增加放大率。
不对称光束畸变又可以造成模糊的图像,称为散光,即使该示例的重点明确。为了减少这种影响,增加至最大音量,放大和集中使用细焦点的形象。然后调整中的 x 和 y 方向将重塑梁 stigmation。
保持调整的重点和 stigmation 的设置,直到图像聚焦尽可能增加的放大级别。
然后返回到所需的缩放级别。
在”慢光”或”快速照片”模式,可获得扫描电镜图像。”快速照片”模式创建的较低的图像质量,而更快地获得。”慢照片”模式创建的更高的图像质量,但可能用电子浸透的表面。
为了测量内捕获的图像特征,利用软件的测量工具。
大多数仪器包括长度、 面积和角度等测量选项。
要确定长度,请选择要在扫描电镜图像上测量的距离。单击图像以创建将由软件分析的参考点。
当完成后,关闭了 SEM 根据制造商的指导方针。
扫描电镜用于图像的样品种类繁多。
扫描电镜可以用于图像复杂和高度结构化的材料,例如碳纤维膜。
该示例显示高度的孔隙度和三维结构;属性,该属性是非常可取的应用,如催化。
扫描电镜也可以用于生物样品,如细菌的图像。在本示例中,头发像附属物或霹雳的肠道细菌成像镜
这种细菌附着玻璃盖玻片并幽门螺杆菌血琼脂平板上生长。
充分干燥后的样品装入,并涂有 5 毫微米的钯-金为了使该示例导电。
最后,该示例成像使用扫描提示幽门螺杆菌被轻易可见,并可测量纳米霹雳。
本示例描述如何脑组织可以被嵌入到一个稳定的树脂,然后在三个维度使用聚焦的离子束和扫描成像
第一,脑组织是固定和嵌入在树脂。感兴趣区域标识,然后用切片机切片。
样品,然后插入到聚焦的离子束扫描电镜三维成像。聚焦的离子束被用于按顺序删除的样品的薄层。每个图层之前去除使用后向散射扫描成像
你刚看了扫描电镜观察朱庇特的简介。现在,您应该了解扫描电镜和如何准备和分析扫描电镜样品的基本工作的原理。
谢谢观赏 !
扫描电镜,见于图 2a,已被用于进行测量和采集样品照片。样本的氯化钠 (NaCl) 盐。然后几个纳米的黄金被溅射到它,使其导电,它被放置存根 (stub) 如图 2b所示。导电样品然后放入扫描电镜样品区,如图 2c所示。
扫描电镜图像被索取 50 X、 200 X、 500 X、 1,000 X 和 5000 X 放大层如图 3所示。图 3a在 50 X 放大显示盐样品鸟瞰视图。图 3b然后放大到一个单独的盐粒子在 200 X 放大倍率。图 3 c显示此相同的放大级别,但包括在扫描电镜软件内的面积和直径测量。图 3d然后放大到 500 X,在盐粒子上显示感兴趣的领域。图 3e显示一个放大的 1,000 X,使自己观察已损坏的盐粒子的角。图 3 楼显示一个放大的 5,000 X,这样就允许用户查看的盐粒子的结构。
图 2。(a) 图像扫描 (b) NaCl 盐放置样品存根 (stub) 与碳纤维的胶带。(c) 样品存根 (stub) 放入扫描电镜样品阶段,带有金涂层处理后。
图 3。扫描电镜图像的各级放大样品: (a) 50 X,(b) 200 X,(c) 与测量 200 X,(d) 500 X,(e) 1,000 X,和 (f) 5,000 X。
扫描电镜是一个非常强大的工具,是常见的大多数研究机构由于其能力的形象是导电的或已处理的导电涂料的任何对象。扫描电镜已用于图像对象,例如半导体器件,2生物膜、3和4除其他外的昆虫。我们也有使用扫描电镜分析纳米纤维和纸质材料、 生物材料、 制备结构。当然,有的材料,如液体,那不能放入标准的扫描电镜成像,但持续发展的环境扫描电子显微镜 (环境扫描电镜) 允许此类功能。环境扫描电镜是类似于扫描电镜,它使用电子枪,分析了电子相互作用与样品。主要的区别是,环境扫描电镜分裂成两个独立的分庭。顶分庭由电子枪和进入高真空状态,而低分庭包含样品和进入高压状态。因为样本区域不需要进入真空,湿或生物样品可以在成像过程中使用。环境扫描电镜的另一个好处是样品不需要涂上导电材料。然而,环境扫描电镜在样品室中有一些缺点的低对比度和小工作距离气态环境。.一般的经验法则是,如果你能够大衣一份样品和一层导电层,然后它可以成像扫描电镜,让几乎所有的固体对象进行分析。
Scanning electron microscopy, or SEM, is a powerful technique used in chemistry and material analysis that uses a scanned electron beam to analyze the surface structure and chemical composition of a sample.
Modern light microscopes are limited by the interaction of visible light waves with an object, called diffraction. The smallest resolvable distance between two objects, or the lateral resolution, varies depending on the size of the diffraction pattern as compared to the object size. As a result, light microscopes have a maximum magnification of up to 1,000X and a lateral resolution of up to 200 nm in ideal situations.
SEM is not limited by diffraction, as it uses a beam of electrons rather than light. Therefore, an SEM can reach magnifications of up to one million X with sub-nanometer lateral resolution. In addition, SEM is not limited to imaging features only in the focal plane, as with light microscopy. Thus, objects outside of the focal plane are resolved, as opposed to light microscopy where they appear blurry. This provides up to 300 times increased depth of field with SEM.
Chemists widely use SEM to analyze surface composition, structure, and shape of nanoscale entities, such as catalyst particles.
This video will outline the principles of the SEM instrument, and demonstrate the basics of SEM sample preparation and operation in the laboratory.
In SEM, samples must be conductive for conventional imaging. Non-conductive samples are coated with a thin layer of metal, such as gold. Images are then generated by scanning a focused beam of high-energy electrons across the sample.
The electron beam used in SEM is generated by an electron gun, fitted with a tungsten filament cathode. The electrons are propelled toward the anode, in the direction of the sample, by an electric field.
The electron beam is then focused at condenser lenses, and enters the objective lens. The objective lens must be calibrated by the user to focus the electron beam on a fixed position on the sample. The focused beam is then raster scanned across the sample.
When the primary electrons interact with the sample, they tunnel to a depth that is dependent on the electron beam energy. This interaction with the surface results in the emission of secondary and backscattered electrons, which are then measured by their respective detectors.
The signal intensity of the emitted secondary electrons varies depending on the angle of the sample. Surfaces perpendicular to the beam release fewer secondary electrons, and therefore appear darker. At the edge of surfaces, more electrons are released and the area appears brighter. This phenomenon produces images with a well-defined 3D appearance, as shown in this SEM scan of asbestos.
In contrast, backscattered electrons are reflected in the opposite direction of the electron beam. Detection intensity increases with increasing atomic number of the sample, enabling the acquisition of compositional information of a surface, as shown in this backscatter image of inclusions in glass.
Now that the principles of the SEM instrument have been outlined, the basic operation of an SEM will be demonstrated in the laboratory.
To begin, sputter coat the sample by placing it onto a sample stub. Make sure that the sample is completely dry and degassed. If necessary, double-sided conductive carbon tape may be used to adhere the sample to the stub. Place the sample into a sputtering system. Sputter a few nanometers of gold onto the sample. The thickness of the gold layer will vary depending on if the coating interferes with the morphology of the sample.
Remove the sample from the sputtering system. Ensure that there is a conductive bridge from the sample surface to the metal stub.
Once the sample has been coated, it is ready to be imaged. To do so, first vent the SEM sample chamber and allow the chamber to reach nominal pressure.
Open the SEM sample compartment, and remove the sample stage. Place the stub onto the sample stage, and tighten the stub in place.
If the distance between the lens and sample, called the working distance, cannot be controlled by the software, ensure that the stage and stub have the proper height to obtain an image.
Put the sample stage into the sample chamber, and close the compartment.
Turn on the vacuum pumps and allow the system to pump down.
To begin imaging, open the SEM software. Select the desired operating voltage ranging from 1–30 kV. With high-density materials, higher acceleration voltages should be used. Select low accelerating voltage for low-density materials.
Most SEM software includes an auto focus feature. This will acquire a focus of the sample to use as a starting point.
Set the magnification to the minimum zoom level of 50X.
SEM has different scan modes such as fast scan, and slow scan. Faster scan mode provides faster refresh rate of the screen with lower quality. Select the fast scan mode to begin, in order to find the sample and begin coarse focusing.
Adjust the course focus until the image becomes sharper. Next, adjust the stage positioning so the region of interest can be seen on the display.
First, focus at the lowest magnification using the coarse focus. Then, increase the magnification level until the desired feature is observed. Adjust the course focus to roughly focus the image at this magnification. If necessary, adjust a coarse focus when the magnification increased.
Then, adjust the fine focus to further improve the image. Repeat these focusing steps every time the magnification is increased.
Asymmetrical beam distortions can cause blurring of the image, called astigmatism, even when the sample is well focused. To diminish this effect, increase the magnification to the maximum level, and focus the image using the fine focus. Then adjust the stigmation in both the x and y direction to reshape the beam.
Keep adjusting the focus and stigmation settings until the image is as focused as possible at the increased magnification level.
Then return to the desired magnification level.
The SEM image can be acquired in either “slow photo” or “fast photo” mode. The “fast photo” mode creates a lower quality image, but is acquired faster. The “slow photo” mode creates a higher quality image, but may saturate the surface with electrons.
To measure features within the captured image, utilize the software’s measurement tools.
Most instruments include measurement options such as length, area, and angle.
To determine length, select the distance to be measured on the SEM image. Click on the image to create the points of reference that will be analyzed by the software.
When finished, shut down the SEM according to the manufacturers guidelines.
Scanning electron microscopy is used to image a wide range of samples.
SEM can be used to image complex and highly structured materials, such as a carbon fiber membrane.
The sample showed a high degree of porosity and three dimensional structure; a property that is highly desirable for applications such as catalysis.
SEM can also be used to image biological samples, such as bacteria. In this example, the hair like appendages, or pili, of gut bacteria were imaged with SEM.
Helicobacter pylori were grown on blood agar plates, and the bacteria seeded onto glass cover slips.
Fully dried samples were mounted, and coated with 5 nm of palladium-gold to make the sample conductive.
Finally, the sample was imaged using SEM. H. pylori were easily visible, with measurable nanoscale pili.
This example describes how brain tissue can be embedded into a stable resin, and then imaged in three dimensions using a focused ion beam and SEM.
First, brain tissue was fixed and embedded in resin. Then the region of interest identified and sliced with a microtome.
The sample was then inserted into the focused ion beam scanning electron microscope for three-dimensional imaging. The focused ion beam was then used to sequentially remove thin layers of the sample. Each layer was imaged prior to removal using backscatter SEM.
You’ve just watched JoVE’s introduction to scanning electron microscopy. You should now understand the basic operating principles of SEM and how to prepare and analyze an SEM sample.
Thanks for watching!
Related Videos
Analytical Chemistry
84.8K 浏览
Analytical Chemistry
204.8K 浏览
Analytical Chemistry
320.2K 浏览
Analytical Chemistry
797.0K 浏览
Analytical Chemistry
623.7K 浏览
Analytical Chemistry
51.2K 浏览
Analytical Chemistry
25.4K 浏览
Analytical Chemistry
282.1K 浏览
Analytical Chemistry
384.6K 浏览
Analytical Chemistry
264.6K 浏览
Analytical Chemistry
94.0K 浏览
Analytical Chemistry
112.3K 浏览
Analytical Chemistry
87.2K 浏览
Analytical Chemistry
51.4K 浏览
Analytical Chemistry
125.3K 浏览