资料来源: 辛春邱和泰勒 · 莫兰,实验室的博士伊恩 · 唐克斯 — — 明尼苏达大学双子城
施伦克线和高真空线都用于排除反应的水分和氧气,通过运行下惰性气体 (通常为 N2或 Ar) 轻微超压或真空条件下的反应。真空转移已作为一种方法单独溶剂 (其他挥发性试剂) 从干燥代理 (或其他非易失性的代理) 购入,然后向反应或存储的船只同时保持空气自由的环境。类似于热蒸馏,真空转移分离溶剂的蒸发和冷凝他们在另一个接收船;然而,真空转移利用施伦克和高真空线到低沸点到室温或下方,这使得为低温蒸馏的流形的低压力。这种技术可以提供更安全的替代品,收集的空气和水分无溶剂热精馏。真空转移后, 由卡尔.费休滴定法、 定性 Na/Ph2CO 溶液滴定法或1H 核磁共振波谱法,则可以定量测试收集的溶剂水含量。
是这两种水分和氧气免费的纯化的溶剂,在化学小分子合成先进的材料应用到不同领域需要。1-3为例,丁基锂,常用的在有机合成和为阴离子聚合引发剂,是水无功和溶剂中的微量水可以极大地影响实际试剂浓度。同样,许多无机和有机金属化合物,特别是低价或协调不饱和的金属,往往是高活性对水和氧气,并且需要空气自由操作除了干和氧溶剂使用。4采用茂线或高真空线允许空气和/或水分敏感,这种化合物的正确操作和真空转移是严格干燥和脱气溶剂方法之一。
施伦克线和相应的玻璃器皿最初是由化学家威廉 · 约翰 · 施伦克作为一种工具来合成和操纵三苯甲基自由基以及 organosodium 和有机锂化合物。4溅镀广泛采用合成化学家,还有几个商业上可用的设计。施伦克线通常包括双玻璃流形 (一个用于真空,一个用于惰性气体) 4-6 瓣的端口,与大口径厚壁橡胶油管导致从端口各种反应装置。5,6最常见的歧管阀是抹了油的地面玻璃或聚四氟乙烯水龙头,允许而厚壁橡胶油管是丁基橡胶或 Tygon 品牌油管惰性气体真空之间的无缝过渡。一般情况下,有的权衡中便于维护与无空气质量 (出气和/或气体渗透率) 当选择各种类型的阀门结构或油管类型和不同应用程序之间需要不同程度的质量。
真空歧管连接到一台真空泵。以防止溶剂或其他有害的物质进入真空泵,低温的陷阱 (经常液态氮、 77 K 或干冰/丙酮浆,195 K) 位于真空歧管和泵之间。8许多研究组采用两个陷阱设计,其中第一个陷阱用于除去有机溶剂和泵保护; 第二个陷阱在一般情况下这种设计提供优异的保护真空泵在常规操作期间。惰性的歧管连接的压力调节的惰性气体源 (N2或 Ar),已通过水分/氧气净化器和通过油起泡器保持略高于大气压力的线压力排出。
高真空线由同一双歧管的设计,但使用歧管与真空泵之间放置一个扩散泵来生成 (到 10-7乇) 显著高于真空。扩散泵的工作原理是回流重油或汞产生高速喷射出的蒸气,然后指示分子泵的喉咙。 此外,高真空线放弃使用的大口径厚壁橡胶管和主要使用玻璃对玻璃连接来连接设备,最小化到系统的气体扩散。一般情况下,溅镀用于操作需要插管转让、 反流方法或分馏蒸馏,而高真空线用于定量气体浓缩或极空气敏感反应;但是,也可以用于大多数应用程序中根据用户的个人喜好。
真空转移是共同传输技术,溶剂从船船同时保持空气自由的环境。同时作为一种方法从干燥剂; 分离溶剂干燥/净化空气无反应的有机溶剂,这种技术通常会遇到然而,它可以普遍应用于捕获或任何挥发性化合物内一种混合物的分离。在一般的意义上,真空转移是低温蒸馏和标准热蒸馏相同的物理原则下运作。其主要优势,传统的蒸馏是他们不加热,使用易燃或过氧化物形成溶剂时大大减少火灾或爆炸的危险。虽然只的灯泡灯泡真空转移在这里提出的但它是可能用更精心设置分隔多个组件通过连续低温服饰。
率 (和实用性) 在哪一个可以低温真空转移挥发性成分的三个主要因素决定: (1) 蒸气压力的挥发 (越高越好);(2) 质量的真空 (越低越好 — — 因此,高真空线是首选溅镀);(3) 蒸馏通路长度/直径 (短长度,宽直径是更好)。以真空转移效率最大化,溶剂将首先脱气使用冻融泵技术,然后真空转移到储存容器通过专门的 U 形桥管连接到高真空线或茂线只玻璃对玻璃连接。这种技术可以相对轻松地允许转让的高沸点溶剂如甲苯、 二氧六环。
某些化学反应必须保持免费的水和氧气。施伦克线是用于安全处理的空气和水分敏感试剂双歧管。
该装置是由威廉 · 施伦克在 20 世纪 20 年代发明的。他设计的一个关键组成部分是施伦克瓶。它具有旋塞阀,真空或惰性气体可适用到系统中,根据需要。领口可以与另一个设备接口或用隔膜,密封和试剂可以添加没有空气。
一旦到装置,介绍了试剂,他们可以操纵在无氧和水的环境中。
这个视频会突出显示茂线,基本操作规程,然后证明在实验室通过溶剂真空传输原理。
施伦克线是一种管状玻璃器具,一行用于传递真空状态下,与另一线,用来运送惰性气体。在一起,该系统被称为双歧管。双歧管有四到六瓣的端口,用厚厚的橡胶管通往各种反应仪器。惰性气体歧管连接到压力调节的惰性气体源。它是通过油起泡器保持线压力略高于大气排出。油起泡器还可以防止空气进入流形,防止污染的线。
真空歧管连接到一台真空泵。为了凝聚挥发性成分,从而防止他们进入和破坏真空泵,低温的陷阱,经常用液氮或干冰浆,冷却位于真空歧管和泵之间。
施伦克线系统可以用于许多技术和反应,如溶剂的真空转移。这涉及转移的溶剂容器,同时保持空气自由的环境。
现在,您了解茂线经营的原则,让我们看看空气和无氧溶剂转移。
若要开始,请确保工作流形上的所有端口都闭合的和所有的接头正确涂上高真空润滑脂。
将溶剂陷阱附加到真空的行,和他们通过开启真空泵密封。
将周围的溶剂的陷阱,真空杜瓦瓶,装满液氮低温保护泵。
打开可调节的惰性气体流中,并调整通过观看起泡。将所需的器械,例如施伦克烧瓶中,连接到使用厚橡胶管或标准的锥形玻璃器皿的流形端口。
第一次打开真空反应端口并完全撤离烧瓶清除顶空瓶中。关闭端口到真空,然后慢慢地打开惰性气体反应端口和等待,直到起泡器开始再泡。关闭到惰性气体反应端口和过程再重复两次。
下一步是准备一溶剂的壶。这用于生产无水和氧溶剂敏感反应。此过程使用常见的二苯甲酮钠设置。
若要开始,请放在惰性气氛下手套箱玻璃器皿和试剂。测量约一立方厘米的金属钠,并切成小块。放入标准的锥颈的 500 毫升圆底烧瓶的碎片联合。重的二苯甲酮 1.25 g,将它放入圆底烧瓶与钠。添加重型搅拌棒。
密封瓶使用最少量的重型高真空润滑脂与加油 180 ° 24/40 适配器。凯克剪辑置于接缝处,用以确保安全连接。
从手套箱,删除烧瓶和撤离使用茂行瓶顶空。密封的 180 ° 的适配器,并从在真空下线删除烧瓶。
重视溶剂罐子的顶部漏斗,漏斗装满大约 300 毫升的所需溶剂。使用一根长针连接到氮线,泡沫氮气通过部分脱气它的溶剂。
同时保持氮冒泡,慢慢开启 180 ° 适配器将引进溶剂罐的溶剂。当漏斗的溶剂水平接近适配器时,关闭适配器和删除漏斗。
几个小时搅拌锅。该解决方案将变成深紫色指示钠二苯甲酮羰自由基的形成。基的形成标志着溶剂是干燥和无氧。如果锅不转深紫色,脱气的解决方案。使用冻融泵技术,因为在此集合的”气液体用泵、 冻融循环。”中详细说明
干在干燥炉中接收呵斥烧瓶和 u 型真空转移桥 500 毫升。呵斥瓶是两颈圆底烧瓶。一个脖子被线程,以便旋塞阀的连接。
所有关节轻轻都涂上真空润滑脂,并将 U 形桥附加到真空线。连接到 U 形桥呵斥瓶和溶剂罐。要确保安全使用凯克剪辑重制度。撤离系统和脱气的溶剂,如前面所述。
关闭上面的 U 桥阀门,关闭真空。该系统应与呵斥阀门打开静态真空和溶剂罐 180 ° 适配器下关闭。使用实验室杰克来提高-78 度丙酮/干洗冰浆冷却接收呵斥烧瓶。
开始搅拌溶剂的锅,,然后慢慢地打开的 180 ° 适配器的旋塞阀。一定要慢慢转旋塞阀,所以液体不会迅速煮沸的进 U 联合。溶剂将开始在接收烧瓶冷凝。如果溶剂罐冻结在传输过程中,关闭呵斥瓶阀和允许溶剂锅中加热到室温,然后再继续。
如果溶剂迁移速度非常缓慢,脱气再次使用冻融泵的系统。
等待,直到溶剂罐几乎是干的或已收集的溶剂所需的量。关闭旋塞阀接收瓶,和溶剂的锅。密封的瓶现在可以从系统中删除。
要关闭系统,首先关闭流形的所有端口,然后关闭惰性气体流量。
接下来,去除溶剂陷阱和杜瓦瓶。采取极端谨慎,如果任何蓝色液体中存在的陷阱,因为它可能是液态氧。协商安全协议采取适当行动。
施伦克线系统用于广泛的空气在有机化学中的敏感反应。
量子点广泛用于单分子荧光成像的影响。在此示例中,使用茂行惰性气氛下,合成了量子点。在惰性气体和真空条件下合成了小镉硒化量子点芯。纳米颗粒的大小取决于其荧光性能。
硒是迅速注入镉溶液完成核心的合成。然后,他们被汞与生物相容性聚合物涂层,其荧光的增产羧基。点的荧光持续时间远远超过传统染料或蛋白质。
处理和分析的挥发性和空气敏感气体通常具有挑战性,但可以安全地执行茂线使用。在此示例中,挥发性气体被转移到可锁定的试管,使用茂行。
测试管冷却使用液态氮,凝结气体,从而把他们困在试管中。从容的气体然后被转移到一台质谱仪使用锁定的试管中和自定义连接系统。
你刚看了朱庇特的简介茂线系统。你现在应该明白如何操作干燥的茂线和纯化溶剂,并进行真空转移。
谢谢观赏 !
这张照片是真空转移在进步 (图 2) 和后 Na/Ph2CO 滴定滴定法进行的 (图 3)。
通过这种方法收集的溶剂进行了羰自由滴定法。图 3显示的羰自由测试常见可能的结果。指示中的紫色颜色 (a) < 10 ppm H2O 的溶剂;而蓝色和无色解决方案表明需要进一步净化事先用水敏感的应用程序变湿溶剂。
图 1。玻璃器皿需要使羰自由锅和执行呵斥瓶真空转移。(a) 为溶剂中加入半锅; 漏斗(b) 500 毫升圆底烧瓶;(c) 180°适配器;(d) 500 毫升呵斥瓶;(e) 真空转移桥。
图 2。安装真空转移: (a) 高真空线,(b) 转移桥,(c) 溶剂与 180°适配器、 (d) 接收呵斥瓶和 (e) 冷却浴锅。
图 3。收集后的羰自由溶液滴定溶剂。(a) 紫色表示 < 10 ppm H2O,而蓝色 (b) 和 (c) 无色需进一步纯化。
Certain chemical reactions must be kept free of water and oxygen. A Schlenk line is a dual manifold used in the safe handling of air- and moisture-sensitive reagents.
The apparatus was invented in the 1920s by Wilhelm Schlenk. A key component of his design is the Schlenk flask. It has a stopcock, where vacuum or inert gas can be applied to the system, as needed. The neck opening can be interfaced with another apparatus, or sealed with a septum, and reagents can be added without the introduction of air.
Once the reagents have been introduced to the apparatus, they can be manipulated in an oxygen- and water-free environment.
This video will highlight the basic operation procedures for a Schlenk line, and then demonstrate the principle in the laboratory via the vacuum transfer of solvents.
A Schlenk line is a tubular glass apparatus, with one line used to deliver a vacuum, and another line used to deliver inert gas. Together, the system is called a dual manifold. The dual manifold has four to six valved ports, with thick rubber tubing leading to various reaction apparatuses. The inert gas manifold is connected to a pressure regulated inert gas source. It is vented through an oil bubbler to keep the line pressure slightly above atmospheric. The oil bubbler also prevents ambient air from entering the manifold, preventing contamination of the line.
The vacuum manifold is connected to a vacuum pump. A cryogenic trap, often cooled with liquid nitrogen or a dry-ice slurry, is located between the vacuum manifold and the pump in order to condense volatile components, thus preventing them from entering and damaging the vacuum pump.
A Schlenk line system can be used for many techniques and reactions, such as the vacuum transfer of solvents. This involves the transfer of solvents from vessel to vessel, while maintaining an air free environment.
Now that you understand the principles of Schlenk line operation, lets see a transfer of air- and oxygen-free solvent.
To begin, make sure that all working ports on the manifold are closed, and that all joints are properly coated with high vacuum grease.
Attach the solvent traps to the vacuum line, and seal them by turning on the vacuum pump.
Place vacuum-sealed Dewars around the solvent trap, and fill with liquid nitrogen to cryogenically protect the pump.
Turn on the regulated inert gas flow, and adjust by watching the bubbler. Connect the desired apparatus, such as a Schlenk flask, to the manifold port using thick rubber tubing or standard taper glassware.
Clear the headspace in the flask by first opening the reaction port to vacuum and fully evacuating the flask. Close the port to vacuum, and then slowly open the reaction port to inert gas and wait until the bubbler begins to bubble again. Close the reaction port to inert gas, and repeat the process two more times.
The next step is to prepare a solvent pot. This is used to produce water- and oxygen-free solvent for sensitive reactions. This procedure uses the common benzophenone-sodium setup.
To begin, place the glassware and reagents into a glovebox under inert atmosphere. Measure approximately one cubic centimeter of sodium metal, and cut it into smaller pieces. Place the pieces into a 500-mL round-bottomed flask with a standard taper neck joint. Weigh 1.25 g of benzophenone and place it into the round-bottomed flask with the sodium. Add a heavy-duty stir-bar.
Seal the flask using a 180° 24/40 adaptor that has been greased with a minimal amount of heavy-duty high vacuum grease. Place a Keck clip over the joint to ensure a secure connection.
Remove the flask from the glovebox, and evacuate the flask headspace using the Schlenk line. Seal the 180° adaptor, and remove the flask from the line while under vacuum.
Attach a funnel to the top of the solvent pot and fill the funnel with roughly 300 mL of the desired solvent. Using a long needle attached to a nitrogen line, bubble nitrogen through the solvent to partially degas it.
While maintaining the nitrogen bubbling, slowly open the 180° adaptor to introduce solvent into the solvent pot. When the solvent level in the funnel approaches the adaptor, close the adaptor and remove the funnel.
Stir the pot for several hours. The solution will turn deep purple indicating the formation of the sodium benzophenone ketyl radical. The formation of the radical signifies that the solvent is dry and oxygen-free. If the pot does not turn deep purple, degas the solution. Use the freeze-pump-thaw technique, as described in detail in this collection’s “Degassing Liquids with Freeze-Pump-Thaw Cycling.”
Dry a 500 mL receiving Straus flask and a U-shaped vacuum transfer bridge in a drying oven. A Straus flask is a two-neck round bottom flask. One neck is threaded to allow for the connection of a plug valve.
Coat all joints lightly with vacuum grease, and attach the U-shaped bridge to the vacuum line. Connect the Straus flask and solvent pot to the U-shaped bridge. Be sure to secure the heavy system in place using Keck clips. Evacuate the system and degas the solvent as described earlier.
Close the top U-bridge valve to close the vacuum. The system should be under static vacuum with the Straus valve open and the solvent pot 180° adapter closed. Use a lab jack to raise a -78 degree acetone/dry ice slurry to cool the receiving Straus flask.
Begin stirring the solvent pot, and then slowly open the stopcock of the 180° adaptor. Be sure to turn the stopcock slowly so the liquid will not rapidly boil into the U joint. Solvent will begin condensing in the receiving flask. If the solvent pot freezes during transfer, close the Straus flask valve and allow the solvent pot to warm to room temperature before continuing.
If solvent transfer is extremely slow, degas the system again using freeze-pump-thaw.
Wait until the solvent pot is almost dry, or until the desired amount of solvent has been collected. Close the stopcock on the receiving flask, and on the solvent pot. The sealed flask can now be removed from the system.
To shut down the system, first close off all manifold ports, and turn off the inert gas flow.
Next, remove the solvent trap and the Dewars. Take extreme caution if any blue liquid is present in the trap, as it could possibly be liquid oxygen. Consult safety protocols for appropriate action.
Schlenk line systems are used in a wide range of air sensitive reactions in organic chemistry.
Quantum dots are widely used for single-molecule fluorescence imaging. In this example, quantum dots were synthesized under an inert atmosphere using a Schlenk line. Small cadmium selenide quantum dot cores were first synthesized under inert gas and vacuum conditions. Their fluorescent properties are dictated by the size of the nanoparticle.
The selenium was swiftly injected into the cadmium solution to complete the synthesis of the cores. They were then functionalized with mercury and biocompatible polymer coatings, increasing their fluorescent yield. The fluorescence duration of the dots far exceeded that of traditional dyes or proteins.
The handling and analysis of volatile and air sensitive gases is typically challenging, but can be safely executed with the use of a Schlenk line. In this example, volatile gases were transferred to a lockable test tube, using a Schlenk line.
The test tube was cooled using liquid nitrogen, in order to condense the gases and trap them in the test tube. The contained gases were then transferred to a mass spectrometer using the locked test tube, and a custom connection system.
You’ve just watched JoVE’s introduction to the Schlenk line system. You should now understand how to operate a Schlenk line, dry and purify solvents, and conduct a vacuum transfer.
Thanks for watching!
Organic Chemistry
33.9K 浏览
Organic Chemistry
164.5K 浏览
Organic Chemistry
70.1K 浏览
Organic Chemistry
41.4K 浏览
Organic Chemistry
55.7K 浏览
Organic Chemistry
78.8K 浏览
Organic Chemistry
699.6K 浏览
Organic Chemistry
156.6K 浏览
Organic Chemistry
235.8K 浏览
Organic Chemistry
211.2K 浏览
Organic Chemistry
329.0K 浏览
Organic Chemistry
32.2K 浏览
Organic Chemistry
287.1K 浏览
Organic Chemistry
356.9K 浏览
Organic Chemistry
245.8K 浏览