负载型催化剂,用恒电位仪/结合电化学测量

JoVE Science Education
Analytical Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Analytical Chemistry
Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat

51,166 Views

10:38 min
April 30, 2023

Overview

资料来源: 实验室的博士尤里 · 罗曼 — — 麻省理工学院

恒电位仪/结合 (通常称作简单恒电位仪) 是一种手段,目前应用的潜力 (恒电位操作) 的措施或措施潜在应用目前 (恒电流操作) (图 1)。它是最常用的仪器,在燃料电池、 电解槽、 电池和超级电容器阳极和阴极材料的电化学性能。

传统上,这些阳极和阴极材料被接口与恒电位仪通过三电极电化学电池。从恒电位仪的电极引线连接到参比电极、 电极 (通常称为辅助电极) 和工作电极 (其中包含感兴趣的测试材料)。电化学电池那么充满高离子强度的电解质溶液中,如酸性、 碱性、 或盐的溶液。媒体为此高离子强度溶液是通常水溶液;然而,应用程序需要更高的经营细胞潜在的窗口,如电池和超级电容器,经常使用非水介质。单元格媒体被脱气用惰性气体 (以防止有害的副作用) 或用测试气体 (如果测试反应涉及到在其中一个电极的气体)。

或者,盐桥或膜用来维持离子接触,如果这两个半细胞是将被测量在不同电解液中。在多相催化,这种类型的”两舱”的单元格常用如果在工作电极测试分子也是在对电极无功。这经常发生,通常采用对电极是白金,是许多反应的高活性催化剂。在这里,将使用单个隔层细胞,在同一介质中所有三个电极在哪里。

这个视频会解释抛光工作电极、 制备催化剂油墨,安装上的工作电极催化剂油墨、 制备电化学电池,然后进行电化学测量的过程。执行的测量包括: 循环伏安法 (CV)、 线性扫描伏安法 (LSV)、 计时电位法 (CP) 和计时 (CA)。

Figure 1
图 1。单室电化学电池示例。a.) 铁氟龙帽、 b)玻璃的单元格 c)。铂丝电极,d。)工作电极、 e)Ag/AgCl 参比电极、 f.)0.5 M 水硫酸电解质溶液。

Principles

恒电位仪可以用于对工作电极应用常数阳极或阴极电位和度量产生的阳极和阴极电流 (计时) 或恒电位仪可以通过反馈控制回路操作的恒和适用恒定的阳极和阴极电流测量电势随时间变化来维持这适用于当前 (计时)。或者,可能随着时间的推移,用循环伏安法或线性扫描伏安法测量与应用的潜在的扫描速率 (潜力对时间的导数) 的阳极和阴极电位探讨潜在空间。

在所有这些技术,即使在恒电流操作期间恒电位仪控制的应用的潜力和措施从 (向) 向 (从) 对电极的工作电极的电子流的当工作电极作为阳极 (阴极)。所施加的电位与已知的和稳定的潜力,就接口与电解质溶液通过多孔的熔块引用对参比电极,其中包含 (如氯化银电极或饱和甘汞电极) 的氧化还原系统。正常运行期间,恒电位仪绘制可以忽略不计,但非零电流通过参比电极,以便准确的潜力可以应用于工作电极。恒电位仪措施到或从一个半反应到下电子的流动,而电解质溶液通过防止在阳极或阴极电荷累积完成电路。

Procedure

1.催化剂油墨和工作电极的制备

安全防范措施:支持在炭黑上的金属必须处理油烟罩或平衡盘柜中,直到它是悬架形式这些粉末吸入危害。

  1. 使用封闭的平衡,权衡出 5-10 毫克的金属,碳黑催化剂并添加到与盖的玻璃瓶。
  2. 利用微管吸吮,稀释的催化剂,以水,这样最终浓度是 7.5 毫克每毫升水的催化剂。
  3. 而 sonicating,100 μ L 的 Nafion 117 解决方案每毫升的水被添加到暂停。
  4. 墨水应该至少 10 分钟以确保均匀分散并完成与粘结剂混合炭黑支持造影。
  5. 虽然 sonicating 墨水,3 毫米玻碳电极应是清洗和抛光的摩擦它在旋转的圆周运动在软铝垫上布满 0.05 µ m 氧化铝溶液。它应该然后冲洗丰富用水来删除氧化铝。
  6. 接下来,7 µ L 的墨水滴落到抛光,垂直面向 3 毫米玻碳电极。在 80 ˚ 为 1 h 然后晒干工作电极,如果催化剂是空气稳定或蒸发下弱抽真空 30 分钟,如果是空气敏感的催化剂。

2.电化学电池制备

安全防范措施:手套,好像都很聪明和安全眼镜总是必须穿但是用于处理硫酸溶液尤其是至关重要的。应任何滴溶液溢出在手腕上,它必须洗用肥皂和水的 15 分钟。主要的外溢,去除污染的衣服和使用眼药水或淋浴应该用于 15 分钟,然后进行医疗咨询。引线不能碰一次放置到电化学电池。

  1. 玻璃细胞充满 10 毫升的 0.5 M H24和脱气至少 30 分钟具有超高纯氮流
  2. 铁氟龙帽子的电化学电池有 3 个端口为工作电极,电极,参比电极
  3. 银/氯化银参比电极是删除从其 1 M 氯化钾溶液,用 DI 水彻底冲洗,然后放入该单元格。
  4. 镀铂铂丝电极是用 DI 水彻底冲洗,然后放入该单元格。
  5. 干的工作电极是用 DI 水漂洗干净,然后放入该单元格。
  6. 恒电位仪被打开的。
  7. 白色的电极铅是第一次连接,并连接到参比电极。
  8. 红色的电极铅然后连接到铂丝电极。
  9. 绿色的电极铅然后连接到金属,碳黑工作电极。
  10. 一个小的 N2清除流是离开不断冒泡在电解液中。
  11. 确保没有线索触摸,所以是其他比 0.5 M H23 电极之间没有直接的电气接触4电解质。

3.电化学分析

  1. 打开后恒电位仪,执行至少 20 调理周期 0 至 0.4 V 与 RHE 50 mV/s 使用的简历。这由选择简历作为一种技术和进入的上部和下部的潜力以及扫描速率限制。
  2. 线性扫描伏安法 (LSV) 然后可以通过选择作为一种技术 LSV 并指定起始的潜力、 最后的潜力和扫描速度执行。扫描速率为 LSV 是通常大大低于 CV,通常 1-2 mV/s,电容电流成为远远低于从法拉第的表面反应所产生的电流
  3. 计时 (CA) 由选择 CA 或者”安培 i-t 曲线”作为一种技术和指定固定的潜力,以及时间的长短仪器应持有工作电极作为这种固定的潜力。
  4. 计时电位法 (CP) 被通过选择 CP 作为一种技术。CP 可以从事一系列的当前步骤为一定长度的时间后, 跟一个新的电流为指定的时间长度指定一个当前的位置。这些应用的电流可以跨内相同的 CP 测量阳极和阴极电流。
  5. 电化学分析完成后,关闭恒电位仪。
  6. 断开连接电极引线并将它们存储在干燥的地方,远离任何液体,防止腐蚀。
  7. 删除参比电极,用大量的水冲洗。然后参考电极直接返回到其 1 M KCl 存储解决方案。永远不应该允许这种电极尖端变得干燥。
  8. 删除铂丝电极和离子水彻底冲洗干净
  9. 删除工作电极和用 DI 水彻底冲洗,然后使用 Kimwipe 与丙酮轻松删除从工作电极表面的干的催化剂油墨。它建议使用后立即抛光电极。
  10. 关闭 N2清除。
  11. 倒入酸性废物容器使用的电解液。冲洗的玻璃细胞和铁氟龙帽用大量的水。

恒电位仪结合是最常用仪器用于电化学表征,用来了解电气变化对化学反应的影响。

恒电位仪结合是电化学系统中使用的仪器。它措施目前应用的潜力,在恒电位仪模式中,或反之亦然的结合模式。为简单起见,该仪器被俗称恒电位仪。

氧化还原或氧化还原,反应发生在电极表面,而且包括电子的转移。尤其是,失去电子化学物种是氧化,一例或减少电子的增益。此氧化还原事件可以诱导的应用潜力,E,也称为电压。

这个视频将展示集起来并使用恒电位仪的电化学性能测试。

在大多数情况下,氧化还原事件被耦合到恒电位仪通过三电极的单元格。三电极电池由工作电极、 计数器或辅助电极和参比电极组成。工作电极是感兴趣的反应发生时,计数器电极用来完成电气电路。

参比电极,其中包含与已知的、 稳定的电极电位的氧化还原体系来衡量的应用的潜力,E.共同参比电极饱和甘汞电极和可逆氢电极,用于校准的目的。银/氯化银电极常用的在电化学测试中,和就接口与电解质溶液通过多孔的熔块。

电化学电池充满高离子强度的电解质溶液中,如酸性、 碱性、 或盐的溶液。电解质溶液可防止在电极的电荷累积。

在电化学实验中,潜力,当前,时间和费用可以所有操作或测定恒电位仪。当工作电极作为阴极时,电子流从反电极的工作电极。带正电的离子或阳离子,流到阴极。当工作电极作为阳极时正好相反。带负电离子或阴离子,流向阳极。

通过选择的操纵和测量参数,大量的测量技术是可能的。计时是一种技术在哪里一个潜在的步骤应用于工作电极,和由此产生的电流变化测量作为时间的函数。当一个潜在的步骤是足够大,使工作电极上的电化学反应时,电流变化。这种技术可以用于许多应用程序,如反应动力学中的扩散系数的测定。

同样,计时电位法是一种技术,在一个常数或不同电流,和潜力测量作为时间的函数。应用的电流会导致电活性物种的氧化或以一定的速率降低。这种技术用于各种应用,如测定反应进度。

伏安法测量阳极和阴极电流对应用的电位扫描。这种测量方法探讨加法或电子从一个化学物种增加过程中去除或减少以恒定速率的潜力。循环伏安法或简历,覆盖在另一个视频中此集合中单独的深度。

现在,已经涵盖了电位滴定法的基本知识,将在实验室中表明的三电极的单元格和工作电极表面的绑定催化剂的制备。在这个演示中,催化剂油墨将编写并测量,其中包括铂纳米粒子在炭黑支持下,与 Nafion 粘结剂。本系统是代表当前燃料电池和电池的研究。

开始,重 7.5 毫克的金属,碳黑催化剂在通风橱,并将其添加到一个玻璃小瓶。稀释的催化剂,以 1 毫升的水,加入 100 μ L 的 Nafion 117,然后盖好小瓶。

超声波几上至少 10 分钟以确保均匀分散并完成与全氟磺酸混合炭黑支持冰的混合物。虽然 sonicating 墨水,准备工作电极上,这是一个 3 毫米玻碳磁盘。

清洁和抛光电极通过轻轻地摩擦它在软垫满 0.05 μ m 胶体氧化铝溶液上旋转的循环运动。抛光后, 冲洗丰富与去离子水,删除氧化铝电极。

接下来,7 毫升的墨水滴到抛光、 垂直定向的玻碳电极上。干工作电极在真空在室温下。然后它在 80 ° C 一小时如果干催化剂纳米粒子是空气稳定。

首先,用 10 毫升的电解质填充玻璃电化学电池。与三个电极的开口的铁氟龙帽帽电化学电池。为了消除氧化还原活性氧消除气体至少 30 分钟用超高纯氮气电解质。允许氮气泡沫轻轻整个试验。

从其 3 M 氯化钠存储解决方案中移除银/氯化银参比电极。冲洗用去离子水,彻底电极并将它放入电化学电池。

接下来,冲洗铂丝电极和干的工作电极,用去离子水,并将它们插入到单元格中。确保电极请勿触摸。恒电位仪,打开并连接到参考和计数器电极的引线。

执行至少 20 调理周期运行循环伏安扫描上部和下部之间的潜在限制在 50 秒的 mV。此步骤可确保电极表面完全的脱水。

线性扫描伏安法或 LSV,可以通过指定的初始和最终的潜力和扫描速度执行。扫描速率为 LSV 是通常低于简历。其结果是一块潜力 vs 电流与可视化为峰在扫描过程中的氧化或还原事件。在这种情况下,在催化剂表面阴极扫描减少了高氯酸铵在电解液中。

若要执行计时,选择它作为技术,然后指定固定的潜力,以及时间。其结果是一个阴谋的电流与时间。初始的衰减是由于电容放电,而稳态部分是本质上是一条直线。计时是恒电位和因而靴上的电容效应的初始渐近朽烂以后, 归因于表面反应的电流可以隔离。

最后,在一系列的当前步骤,指定一个当前的位置为一定长度的时间进行计时电位法。每次电流开关从零到工作电流,还有初始渐近电势变化中,其次是一个稳定的状态。之后每通断周期,稳定催化剂材料需要相同的过电位为指定的电流。

用恒电位电化学测量广泛应用于分析和制作。

电化学用于分析探针分子对电极的绑定。在此示例中,电极图案在微流体通道内,羧基化单链 DNA。当 DNA 杂交与免费的钢绞线时,氧化还原夫妇被阻塞在电极表面。

DNA 杂交然后通过将电极连接到使用三个探头电极恒电位仪测定。

阻抗测量,测量电流,电阻表明,免费的 DNA 浓度的增加导致增加阻抗,因此提高杂交。

下一步,电化学过程用于监视和表征生物膜电极上的增长。为此,三电极细胞聚集,和电解液被细胞肉汤。

生物膜的生长监测使用计时,以实现精确的测量和重现性好的文化条件。

电化学技术也可以用于制备薄膜及电极表面层。电气信号触发本地化的环境在电极表面,可以诱导自组装的材料。

在此示例中,使用电沉积进行沉积的生物材料。壳聚糖,biopolysaccharide,相变溶胶-凝胶在电极表面,创造一部电影。

你刚看了朱庇特的简介电位滴定法。你现在应该明白如何设置一个典型的三电极单元格,并执行基本的电化学测试。

谢谢观赏 !

Results

此过程将导致数字为每四个技术包含测得的电流与电位的情节。CV 和 LSV 公约 》,情节将也被输出作为测得的电流与潜力尽管现实,这些都是测量电流的暂态技术与时间的导数和潜力。

Applications and Summary

LSV、 CV、 CA、 CP,是不可缺少的技术,确定新的电极材料的燃料电池、 电解槽、 电池和超级电容器以及发展的选择性部分氧化或减少商品化学品等领域方面的疗效。这些方法允许确定 overpotentials 的反应不同的电极材料相比,其热力学平衡电位。这些方法还允许超级电容器待定的体积或重量的电容。同样,充放电的电池电极或超级电容率可以确定与这些技术。这些技术还允许为表征的材料的电化学稳定性待定。除了这些基本的技术,更先进的技术与原位红外光谱和质谱等方法包括电位技术的结合。

Transcript

A potentiostat-galvanostat is the most commonly used instrument in electrochemical characterization, and is used to understand the effect of electrical changes on a chemical reaction.

A potentiostat-galvanostat is an instrument used in electrochemical systems. It measures current at an applied potential in potentiostat mode, or vice versa in galvanostat mode. For simplicity, the instrument is commonly called a potentiostat.

Oxidation-reduction, or redox, reactions occur at an electrode surface and involve the transfer of electrons. In particular, the loss of electrons in a chemical species is the case of oxidation, or the gain of electrons in the case of reduction. This redox event can be induced by an applied potential, E, also called voltage.

This video will demonstrate the set up and performance of electrochemical tests using a potentiostat.

In most cases, redox events are coupled to a potentiostat via a three-electrode cell. The three-electrode cell consists of a working electrode, counter or auxiliary electrode, and reference electrode. The working electrode is where the reaction of interest occurs, and the counter electrode is used to complete the electrical circuit.

An applied potential is measured against the reference electrode, which contains a redox system with a known, stable electrode potential, E. Common reference electrodes are the saturated calomel electrode, and the reversible hydrogen electrode, which are used for calibration purposes. The Ag/AgCl electrode is commonly used in electrochemical tests, and is interfaced with the electrolyte solution via a porous frit.

The electrochemical cell is filled with a high ionic strength electrolyte solution, such as an acidic, alkaline, or salt solution. The electrolyte solution prevents charge buildup at the electrodes.

In an electrochemical experiment, potential, current, time, and charge can all be manipulated or measured by the potentiostat. When the working electrode is acting as the cathode, electrons flow from the counter electrode to the working electrode. Positively charged ions, or cations, flow to the cathode. The reverse is true when the working electrode is acting as the anode. Negatively charged ions, or anions, flow to the anode.

By selecting the manipulated and measured parameters, a number of measurement techniques are possible. Chronoamperometry is a technique where a potential step is applied to the working electrode, and the resulting current change is measured as a function of time. When a potential step is large enough to cause an electrochemical reaction at the working electrode, the current changes. This technique can be used for many applications, such as the determination of diffusion coefficients in reaction kinetics.

Similarly, chronopotentiometry is a technique where a constant or varied current is applied, and the potential is measured as a function of time. The applied current causes electroactive species to be oxidized or reduced at a certain rate. This technique is used for a range of applications, such as the determination of reaction progress.

Voltammetry measures anodic and cathodic current with respect to an applied potential sweep. This measurement examines the addition or removal of electrons from a chemical species during the increase or decrease of potential at a constant rate. Cyclic voltammetry, or CV, is covered in depth separately in another video in this collection.

Now that the basics of voltammetry have been covered, the preparation of a three-electrode cell and a working electrode with a surface bound catalyst will be demonstrated in the laboratory. In this demonstration, catalyst ink will be prepared and measured, which consists of platinum nanoparticles in a carbon black support, with a Nafion binding agent. This system is representative of current fuel cell and battery research.

To begin, weigh 7.5 mg of metal/carbon black catalyst in a fume hood, and add it to a glass vial. Dilute the catalyst with 1 mL of water and add 100 μL of Nafion 117, then cap the vial.

Sonicate the mixture on ice for at least 10 min to ensure uniform dispersion and complete mixing of the carbon black support with the Nafion. While the ink is sonicating, prepare the working electrode, which is a 3-mm glassy carbon disk.

Clean and polish the electrode by gently rubbing it in a swirling, circular motion on a soft pad covered with 0.05 μm colloidal alumina solution. After polishing, rinse the electrode copiously with deionized water to remove the alumina.

Next, 7 mL of ink is dripped onto the polished, vertically oriented glassy carbon electrode. Dry the working electrode under vacuum at room temperature. Then dry it at 80 °C for one hr if the catalyst nanoparticles are air stable. 

First, fill the glass electrochemical cell with 10 mL of the electrolyte. Cap the electrochemical cell with a Teflon cap with openings for the three electrodes. De-gas the electrolyte for at least 30 min with ultra high purity nitrogen gas in order to remove redox-active oxygen. Allow the nitrogen to bubble lightly throughout the experiment.

Remove the Ag/AgCl reference electrode from its 3 M NaCl storage solution. Rinse the electrode thoroughly with deionized water, and place it into the electrochemical cell.

Next, rinse the platinum wire counter electrode and the dried working electrode with deionized water, and insert them into the cell. Ensure that the electrodes do not touch. Turn on the potentiostat, and connect the leads to the reference and counter electrodes.

Perform at least 20 conditioning cycles by running cyclic voltammetry scans between the upper and lower potential limits at 50 mV per second. This step ensures that the electrode surfaces are fully hydrated.

Linear sweep voltammetry, or LSV, can be performed by specifying the initial and final potentials, and the scan rate. The scan rate for LSV is typically less than that for CV. The result is a plot of potential vs. current with oxidation or reduction events visualized as peaks in the scan. In this case, the perchlorate in the electrolyte was reduced on the catalyst surface in the cathodic scan.

To perform chronoamperometry, select it as the technique, then specify the fixed potential as well as the time. The result is a plot of current vs. time. The initial decay is due to capacitive discharging, while the steady state portion is essentially a straight line. Chronoamperometry is potentiostatic and thus after the initial asymptotic decay of the capacitative effects, the current attributed to surface reactions can be isolated.

Finally, chronopotentiometry is performed in a series of current steps, where one current is specified for a certain length of time. Each time the current switches from zero to the working current, there is an initial asymptotic change in potential, followed by a steady state. After each on/off cycle, the stable catalyst material requires the same over-potential to drive the specified current.

Electrochemical measurements with a potentiostat are widely used in analysis and fabrication.

Electrochemistry is used to analyze the binding of probe molecules to electrodes. In this example, electrodes were patterned within microfluidic channels, and functionalized with single stranded DNA. When the DNA was hybridized with the complimentary strand, the redox couple was blocked at the electrode surface. 

DNA hybridization was then measured by connecting the electrodes to the potentiostat using three probe electrodes.

Impedance measurements, a measure of the resistance to current flow, showed that increasing complimentary DNA concentration resulted in increased impedance, and therefore increased hybridization.

Next, electrochemical processes were used to monitor and characterize the growth of biofilms on an electrode. For this, a three-electrode cell was assembled, with the electrolyte being the cell broth.

The growth of the biofilm was monitored using chronoamperometry, in order to achieve an exact measurement and reproducible culture conditions.

Electrochemical techniques can also be used in the fabrication of thin films and layers on an electrode surface. Electrical signals trigger localized environments at the electrode surface, which can induce the self-assembly of materials.

In this example, the deposition of biomaterials was performed using electrodeposition. Chitosan, a biopolysaccharide, undergoes a sol-gel transition at the electrode surface, creating a film.

You’ve just watched JoVE’s introduction to potentiometry. You should now understand how to set up a typical three-electrode cell, and perform basic electrochemical tests.

Thanks for watching!