资料来源: 实验室的博士良一石原慎太郎 — — 代尔夫特科技大学
拉曼光谱是一种技术分析振动和其他低频率模式的系统中。它用于标识分子用他们的激光拉曼光谱的化学指纹图谱。在固态物理中它用于表征材料,具体而言,调查其晶体结构或结晶。相比其他方法对调查的晶体结构 (如透射电镜和 x 射线衍射) 显微拉曼光谱是非破坏性、 一般要求没有样品制备,和可以在小样本卷上执行。
用于执行拉曼光谱单色激光照在样品上。如果所需样品可以由一层透明的不是拉曼活性 (如,SiO2) 涂层或放置在去离子水。发出的电磁辐射 (通常在近红外,可见,或近紫外范围) 从样本收集、 激光波长过滤掉 (例如,通过缺口或带通滤波器),以及产生的光通过单色器 (例如,光栅) 发送到 CCD 探测器。用这个,非弹性散射光,源自拉曼散射,可以捕获并用于构造样品的拉曼光谱。
在拉曼显微光谱光穿过显微镜,在到达样品,允许它集中在面积小如 1 µ m2之前。这允许精确测绘的样品或共聚焦显微镜研究层堆栈。关怀已采取,然而,小和强烈激光光斑不损坏样品。
在这个视频中我们将简要地解释程序获得的拉曼光谱,并将给出实例的捕获从碳纳米管的拉曼光谱。
拉曼光谱取决于拉曼散射,这是在系统中的原子或分子内的非弹性散射的光子与低频模式 (例如振动或旋转模式)。这是与红外光谱、 红外线吸收低频模式取决于系统中。这两种技术提供类似,但互补,信息。然而,这并不意味着振动特征是拉曼光谱和红外光谱 ‘积极’,那就是,他们出现时进行了探讨。对于分子,振动是拉曼活性时,会造成变化的极化率,而用于红外光谱测定振动时,可见它引起中偶极矩的变化。这意味着,拉曼光谱没有永久偶极矩是必需。对于与对称中心的分子,这两种光谱方法是相互排斥。极性键通常给拉曼信号太弱,而中性债券通常是拉曼激烈,作为他们在振动过程中的极化率涉及大的变化。最后,两个画背的红外光谱是水不能用作溶剂和样品制备是更复杂。然而,拉曼光谱仪是更昂贵。
激发出来的光子散射后相比,有更低或更高频率的入射光,分别被称为斯托克斯和反斯托克斯散射。斯托克斯和反斯托克斯线有相同的变化在能源领域,但其规模而有所不同例如衬底温度。分子光子相互作用与债券和中分子的振动对使用的激光波长敏感。这将导致分子要进一个短的时间之后, 它漂移放出一个光子的虚拟能量状态退出。固态材料创建传入的光子和电子–空穴对,其中可以有声子晶体的晶格在散点图。声子是描述集体的量化震动的动作在晶格的原子或分子凝聚态物质中的准粒子。后此散射事件电子-空穴对衰变,并放出一个光子与转移的频率。
这些分散的光子的谱是入射光子的拉曼光谱,表现强烈的散射光子与频差 (衡量在波数与单位厘米-1)。如果在系统中的振动模式使用,激光波长对敏感,它们的强度和位置可以不同激光波长之间,峰只出现在拉曼光谱。通常情况下,峰属于范围的 500 — — 2,000 厘米-1,和较高的订单山峰可以发现周围一阶拉曼峰的波数的倍数。峰的强度取决于许多因素,包括激光、 焦点、 采集时间和散射的概率发生的权力。因此,强度谱之间不能直接比较和总是应该被转换为强度比值。全宽半最大值 (FWHM) 的峰值直接可以比较不同的度量标准。
拉曼光谱技术利用散射的光收集独特的分子信息向下调查材料。
当光照射一种分子时,大部分能量不吸收,但在相同的能量作为入射光的散射。然而,散射辐射的一小部分会出现不同的入射辐射的能量。
这些转变的能量对应的分子的振动状态,可以用来确定、 量化,并检查下分析样品的分子组成。
这个视频将介绍这项技术背后的理论、 证明程序来执行同样的操作在实验室里,和目前的一些方法,该方法被应用于工业今天。
辐射与样品的相互作用可以看作是光子与分子之间的碰撞。
传入的光子激发到从中它很快会回到其基态衰变和发出一个分散的光子短命的虚拟激发态分子。能源发生有没有交换时,分散的光子具有相同波长的入射光,作为,这就所谓的弹性瑞利散射。
拉曼散射代表分子经历振动激发或由于非弹性相互作用与光子的松弛。如果分子从地面状态提高到虚拟的激发的态和降回至一个更高的能量振动状态,然后得到了从光子的能量。这也被称为斯托克斯散射。
如果在更高的振动能量、 增益能源和滴回落到较低的基态分子,然后分子已经失去了能量的光子,引起反斯托克斯散射。在室温下,在基态分子的数量是高于那些在更高的能量状态导致斯托克斯散射要更强烈和更普遍被审查,比反斯托克斯散射。
分子的振动和旋转所产生的这些与入射光子的相互作用包括对称和不对称拉伸、 修剪、 摇,摇,扭曲。
这些分子的振动不仅用于喇曼光谱学、 但也沿着一边它与其他技术,如红外光谱。振动是”拉曼-主动”,或用拉曼光谱探测出来时,会造成变化的极化率或失真,其电子云的数量。振动是红外主动当它诱导的改变,其偶极矩。
例如,对称的延伸,像在二氧化碳,扩张引起电子离开细胞核,变得容易极化,但不是改变偶极矩。非对称的拉伸,另一方面,结果在偶极矩的变化,但在极化率没有变化。出于这些原因,拉曼光谱和红外光谱法被视为补充化学分析的方法。
拉曼光谱是由强烈的单色激光照耀的示例执行的。收集了从该样本的辐射,和激光波长过滤掉。散射光通过单色仪发送到 CCD 探测器。在显微拉曼光谱,激光通过显微镜,才到达样品,允许在微米级的空间分辨率。
样品的拉曼光谱是一块作为功能发生转移的但在波数的入射辐射的散射辐射强度。峰的形状和强度可以表明分子的结构、 对称、 晶体质量和浓度的物质。
现在,您了解此方法背后的理论,让我们探索一项议定书,在样品上执行显微拉曼光谱。
开始执行程序,打开所需的激光并选择正确的光学波长使用。给激光 15 分钟开始实验前先热身。同时,在计算机上打开和加载仪器软件。
选择正确使用激光波长。执行所需的拉曼光谱仪校准。这可以使用硅片放置在显微镜舞台上,但在这里用内部硅的参考样品。拉曼光谱被获得使用适当曝光能量和时间。硅在大约 520 波数应峰很强。
一旦校准,将下面的显微镜和重点标本放在感兴趣的图层上。黑暗中的围墙用来消除杂散光。确保激光的路径不受阻光吸收或拉曼活性层,从而获得干净的频谱。
选择波数应由单色仪扫描的范围。选择激光强度产生足够的信号,但并不损害根据调查材料。这可以由同一地点两次成像检查。如果谱发生变化,可能发生损坏。
如果样品是在完全黑暗中的围墙,不是需要后台扫描。获得样品的谱。
调查数据使用适当的软件,通过与现有文献的比较。宇宙射线显示为尖锐和激烈的高峰,必须删除。激光干涉与某些底物或污染物可能会导致删除由频谱的预计不会包含来自样品的拉曼峰的地区适当的曲线拟合的比较基准。有些材料,不同的拉曼峰重叠程度,峰值反褶积方法可能有必要。
这些步骤完工后,由此产生的光谱将代表物种样本中存在的定性和定量数据。
在这里,我们将研究碳纳米管,这是非常小的拉曼光谱,单层或多层的空心辊的石墨烯薄片。示了取自使用 514 nm 激光的多壁碳纳米管的拉曼光谱。
因为碳纳米管由晶格表示,他们的振动被代表的集体振动”模式”。G 模式峰值在 1,582 波数被有关 sp2杂化的碳-碳键在任何石墨材料中可以发现。也是突出 D 峰 1,350 波数代表散射,在晶体点阵的障碍所致。强度比的 G 和 D 方式量化碳纳米管的结构质量。
激光和计算机技术的发展有一次乏味使拉曼光谱成为一个化学分析的最广泛使用的技术。
固体氧化物燃料电池或固体氧化物燃料电池,有可能在未来几十年成为低排放能源的主要来源。这些细胞工作由电化学将燃料和氧化剂,在这种情况下固体氧化物的能量转化为电能。仍然是在表征燃料电池材料原位的电化学机理方面有些困难。然而,拉曼光谱是现在日益被用来映射复杂化学反应机制在阳极。
艺术对象光谱研究了,透露自己的年龄,组成,和优化养护条件。非破坏性的显微拉曼光谱性质使得它非常适合用于此目的。通过激光侧重艺术样品和密谋漂移散射光的强度,可以获得光谱艺术家的颜料、 绑定媒体或清漆。拉曼光谱甚至用来识别伪造的艺术作品。
你刚看了朱庇特的简介拉曼光谱化学分析。你现在应该明白背后拉曼效应和它如何应用于拉曼光谱的原则如何在实验室里,和一些令人兴奋的方式,它被应用于行业今天执行您自己的拉曼分析。
谢谢观赏 !
采取从使用 514 nm 激光的多壁碳纳米管的拉曼光谱如图 1所示。已删除直线基线和数据已经标准化,对周围 1,582 厘米-1的最强烈的功能。
几个高峰值可以被观察,起源于不同的样品的结晶特征。1,350 厘米-1 D 高峰起源形式双共振弹性声子散射与晶格中的缺陷。G-峰值 (1,582 厘米-1) 是 sp2杂化碳-碳键与可以在任何石墨材料中发现。这个强大的峰值实际上肩右侧有谱,这是 D’ 峰值约 1,620 厘米-1。此峰又相关的缺陷。
在更高的波数可以观察几个其他山峰。G’ (或 2D) 山顶周围 2,700 厘米-1是 D 乐队,言外之意,由两个非弹性声子散射过程引起的。因此它不需要缺陷和可以高结晶样品中发现。也是如此为 2D’ 乐队约 3,240 厘米-1,这是 D 的泛音乐队。最后 D + G 周围 2,930 厘米-1是 D 和 G 带的组合的泛音。
图 1。多壁碳纳米管的拉曼光谱。谱用 514 nm 激光、 直线基线被拟合谱平坦区域和频谱归一 G 峰值。
拉曼光谱技术可以应用于广泛的领域,从 (生物) 化学到固态物理学。在化学,拉曼光谱可以用于调查化学键的变化,并通过使用其拉曼指纹识别特定的 (有机或无机) 分子。这可以在任一气体,液体,或固体阶段的材料。已有,例如,用于医学目的的活性成分的药物,和拉曼气体分析仪用于呼吸气体在手术过程中的实时监测。
在固态物理学拉曼光谱用于表征材料和确定其晶体取向、 组成、 应力、 温度和结晶度。它已被用于识别的矿物组成、 并可以用于痕迹鉴定证据分析。它也是可以帮助我们观察等离子体激元,和其他低频率激励下固体拉曼光谱。专门为石墨材料它已被用于调查样品的结晶度、 单、 双壁纳米管的直径和他们的手。对于石墨烯它可以也用于识别的石墨烯层数。
拉曼光谱在其他光谱的方法一大优势是,它通常需要没有样品制备如果您可以集中精力样品与显微镜下,可以分析 µ m 大小样本、 要求没有联络,和非破坏性。
Raman spectroscopy exploits the scattering of light to gather molecular information unique to the material under investigation.
When light strikes a molecule, most of the energy is not absorbed, but scatters at the same energy as the incident light. However, a small fraction of scattered radiation appears at energies differing from the incident radiation.
These shifts in energy correspond to vibrational states of molecules and can be used to identify, quantify, and examine the molecular composition of the sample under analysis.
This video will introduce the theory behind this technique, demonstrate a procedure to perform the same in the laboratory, and present some of the ways in which this method is being applied in industries today.
The interaction of radiation with a sample can be thought of as collisions between photons and molecules.
An incoming photon excites the molecule to a short-lived virtual excited state from which it will quickly decay back to its ground state and emit a scattered photon. When there is no exchange in energy taking place, a scattered photon has the same wavelength as the incident photon, and this is called elastic Rayleigh scattering.
Raman scattering represents molecules undergoing vibrational excitation or relaxation as a result of inelastic interaction with photons. If the molecule is raised from a ground state to a virtual excited state and drops back to a higher energy vibrational state, then it has gained energy from the photon. This is also called Stokes scattering.
If a molecule in a higher vibrational energy, gains energy and drops back down to a lower ground state, then the molecule has lost energy to the photon, giving rise to anti-Stokes scattering. At room temperature, the number of molecules in the ground state is higher than those in a higher energy state causing Stokes scattering to be more intense and more commonly examined, than anti-Stokes scattering.
Molecular vibrations and rotations arising from these interactions with incident photons include symmetrical and asymmetrical stretching, scissoring, rocking, wagging, and twisting.
These molecular vibrations are used not only in Raman spectroscopy, but also along side it with other techniques, like infrared spectroscopy. A vibration is “Raman-active”, or detectable by Raman spectroscopy, when it causes a change in the polarizability, or the amount of distortion, of its electron cloud. A vibration is infrared-active when it induces a change in its dipole moment.
For example, symmetrical stretches, like expansion in carbon dioxide, cause electrons to move away from nuclei and become easily polarizable but do not change the dipole moment. An asymmetric stretch, on the other hand, results in change in dipole moment, but no change in polarizability. For these reasons, Raman and infrared spectroscopy are treated as complementary methods of chemical analysis.
Raman spectroscopy is performed by shining an intense monochromatic laser on a sample. Radiation emitted from the sample is collected, and the laser wavelength is filtered out. Scattered light is sent through a monochromator to a CCD detector. In Raman micro-spectroscopy, the laser passes through a microscope before reaching the sample, allowing spatial resolution at the micron level.
The Raman spectrum of a sample is a plot of intensity of scattered radiation as a function of shift in wavenumbers from that of incident radiation. Peak shapes and intensities can indicate molecular structure, symmetry, crystal quality, and concentration of material.
Now that you understand the theory behind this method, let’s explore a protocol to perform Raman microspectroscopy on a sample.
To begin the procedure, turn on the required laser and select the correct optics for the wavelength used. Give the laser 15 min to warm up before beginning the experiment. In the meantime, turn on the computer and load the instrument software.
Choose the correct wavelength for the laser used. Perform the required calibration of the Raman spectroscope. This can be done using a silicon wafer placed on the microscope stage, but here an internal silicon reference sample is used. The Raman spectrum is obtained using an appropriate exposure energy and time. The silicon should give a strong peak at around 520 wavenumbers.
Once calibrated, place the sample underneath the microscope and focus on the layer of interest. A dark enclosure is used to remove stray light. Make sure the path of the laser is not obstructed by light absorbing or Raman-active layers so as to obtain a clean spectrum.
Select the range of wavenumbers that should be scanned by the monochromator. Select a laser intensity that produces sufficient signal, but doesn’t damage the material under investigation. This can be checked by imaging the same spot twice. If the spectrum changes, damage may have occurred.
If the sample is in a completely dark enclosure, a background scan is not needed. Acquire the spectrum of the sample.
Investigate the data using appropriate software and by comparing with available literature. Cosmic rays appear as sharp and intense peaks that must be removed. Laser interference with certain substrates or contaminants can result in a baseline, which is removed by fitting an appropriate curve to the regions of the spectrum that are not expected to contain Raman peaks originating from the sample. For some materials, the different Raman peaks overlap to a degree that peak deconvolution might be necessary.
After these steps are competed, resulting spectra will represent qualitative and quantitative data on species present in the sample.
Here, we’ll examine the Raman spectrum of carbon nanotubes, which are very small, hollow single or multi-layered rolls of graphene sheets. The Raman spectrum taken from multi-walled carbon nanotubes using a 514 nm laser is shown here.
Because carbon nanotubes are represented by crystal lattices, their vibrations are represented by collective vibration “modes”. The G-mode peak at 1,582 wavenumbers is related to the sp2 hybridized carbon-carbon bond that can be found in any graphitic material. There is also a prominent D peak 1,350 wavenumbers represents scattering, caused by a disorder in the crystal lattice. The ratio of the intensity of the G and D modes quantifies the structural quality of the nanotube.
Developments in lasers and computer technologies have made the once tedious Raman spectroscopy one of the most widely used techniques for chemical analysis.
Solid Oxide fuel cells, or SOFCs, have the potential to become a major source of low emissions energy in the coming decades. These cells work by electrochemically converting the energy of a fuel and an oxidant, in this case solid oxides, to electricity. There is still some difficulty in characterizing the electrochemical mechanism of the fuel cell materials in situ. However, Raman Spectroscopy is now increasingly being used to map intricate chemical reaction mechanisms at the anode.
Art objects are spectroscopically examined to reveal their age, composition, and to optimize conditions for conservation. The non-destructive nature of Raman microspectroscopy makes it well suited for this purpose. By focusing a laser on the art sample and plotting the intensity of inelastically scattered light, spectra of artists’ pigments, binding media, or varnishes can be obtained. Raman spectroscopy is even used to identify falsification of art works.
You’ve just watched JoVE’s introduction to Raman Spectroscopy for Chemical Analysis. You should now understand the principles behind the Raman effect and how it applies to Raman spectroscopy, how to perform your own Raman analysis in the lab, and some of the exciting ways in which it is being applied in industries today.
Thanks for watching!
Analytical Chemistry
83.2K 浏览
Analytical Chemistry
202.9K 浏览
Analytical Chemistry
318.3K 浏览
Analytical Chemistry
787.9K 浏览
Analytical Chemistry
615.2K 浏览
Analytical Chemistry
50.6K 浏览
Analytical Chemistry
25.2K 浏览
Analytical Chemistry
279.2K 浏览
Analytical Chemistry
380.8K 浏览
Analytical Chemistry
262.5K 浏览
Analytical Chemistry
92.8K 浏览
Analytical Chemistry
111.1K 浏览
Analytical Chemistry
86.4K 浏览
Analytical Chemistry
51.2K 浏览
Analytical Chemistry
123.0K 浏览