-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

DE

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

German

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Chemistry
Chemische Formeln
Chemische Formeln
JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Chemical Formulas

3.2: Chemische Formeln

58,990 Views
02:52 min
September 3, 2020
AI Banner

Please note that some of the translations on this page are AI generated. Click here for the English version.

Overview

A chemical formula presents information about the proportions of atoms constituting a particular chemical compound or molecule, mainly using symbols of elements and numbers. At times other symbols, such as dashes, parentheses, brackets, commas, plus, and minus signs, are also used. A chemical formula can be one of three types – molecular, empirical, and structural.

Molecular Formula

The molecular formula represents a molecule or a chemical compound using chemical symbols (to indicate the types of atoms) and subscript-numbers (to show the number of atoms of each type in the molecule). Molecular formulas are also used as abbreviations for the names of compounds.

Some elements consist of discrete, individual atoms, like the noble gases helium, neon, and argon. Such elements are called monatomic gases and have molecular formulas He, Ne and Ar, respectively. Few elements exist as molecules made up of two or more chemically bonded atoms of the same element. For example, elements such as hydrogen, oxygen, and nitrogen exist as diatomic molecules containing two atoms each and thus have the molecular formulas H2, O2, and N2, respectively. Similarly, elements such as phosphorus and sulfur exist as polyatomic molecules with molecular formulas P4 and S8, respectively. 

It is important to note that a subscript following a symbol and a number in front of a symbol does not represent the same thing; for example, H2 and 2H represent distinctly different species. H2 is a molecular formula; it represents a diatomic molecule of hydrogen, consisting of two atoms of the element that are chemically bonded together. The expression 2H, on the other hand, indicates two separate hydrogen atoms that are not combined as a unit. The expression 2H2 represents two molecules of diatomic hydrogen.

Empirical Formula

Compounds are formed when two or more elements chemically combine, resulting in the formation of bonds. For example, hydrogen and oxygen can react to form water, and sodium and chlorine can react to form sodium chloride or table salt. We sometimes describe the composition of these compounds with an empirical formula, which indicates the types of atoms present and the simplest whole-number ratio of the number of atoms (or ions) in the compound. For example, titanium dioxide (used as a pigment in white paint and in the thick, white, blocking type of sunscreen) has an empirical formula of TiO2. This identifies the elements titanium (Ti) and oxygen (O) as the constituents of titanium dioxide and indicates the presence of twice as many atoms of the element oxygen as atoms of the element titanium.

In many cases, the molecular formula of a substance is derived from an experimental determination of both its empirical formula and its molecular mass (the sum of atomic masses for all atoms composing the molecule). For example, it can be determined experimentally that benzene contains two elements, carbon (C) and hydrogen (H), and that for every carbon atom in benzene, there is one hydrogen atom. Thus, the empirical formula is CH. An experimental determination of the molecular mass reveals that a molecule of benzene contains six carbon atoms and six hydrogen atoms, so the molecular formula for benzene is C6H6.

Structural Formula

The structural formula for a compound gives the same information as its molecular formula (the types and numbers of atoms in the molecule) but also shows how the atoms are connected in the molecule. In other words, the structural formula represents the molecular structure of a compound graphically. It shows the probable arrangement of the atoms and how the atoms are connected in real three-dimensional space, giving more information about the molecular geometry. Lines are used to represent bonds present between the atoms. The formula may also depict the approximate bond angles, giving a sense of the molecule’s shape. 

This text is adapted from Openstax Chemistry 2e, Section 2.4: Chemical Formulas.

Transcript

Chemische Verbindungen sind Stoffe, die sich aus zwei oder mehr Elementen in bestimmten Anteilen zusammensetzen. Um diese Verbindungen genau zu beschreiben, wurden chemische Formeln entwickelt. Die chemische Formel gibt Auskunft über die Elemente und die Anzahl der beteiligten Ionen oder Atome.

Elemente werden durch ihr chemisches Symbol dargestellt, während die relative Anzahl der Ionen oder Atome durch eine tiefgestellte Zahl angegeben wird. Zum Beispiel ist Tafelzucker oder Saccharose eine Verbindung, die die Elemente Kohlenstoff, Wasserstoff und Sauerstoff enthält dargestellt durch ihre Symbole C, H und O.Die Zahlen zwölf, zweiundzwanzig und elf geben die Gesamtzahl der in der Verbindung vorhandenen Kohlenstoff-Wasserstoff-und Sauerstoffatome an. Im Allgemeinen sind die Elemente nicht in alphabetischer Reihenfolge aufgeführt, sondern beginnen mit den positiv geladenen oder metallischen Elementen, gefolgt von den negativ geladenen oder weniger metallischen Elementen, wie Kaliumhydroxid.

Chemische Formeln werden in molekulare, empirische und strukturelle Formeln eingeteilt. Die Molekülformel beschreibt eine Verbindung, indem sie jedes Element und die genaue Anzahl der vorhandenen Atome auflisten. Die Summenformel von Glucose lautet C_6H_12O_6, was bedeutet, dass Glucose aus sechs Kohlenstoff-zwölf Wasserstoff-und sechs Sauerstoffatomen besteht.

Die empirische Formel zeigt das einfachste ganzzahlige Verhältnis der Atome der vorhandenen Elemente an. Bei Glucose beträgt das einfachste Verhältnis der Kohlenstoff-Wasserstoff-und Sauerstoffatome 1:2:1 daraus ergibt sich die empirische Formel CH2O. Die Summenformel einer Verbindung ist ebenfalls ein ganzzahliges Vielfaches ihrer empirischen Formel.

Bei Glukose ergibt die Multiplikation ihrer empirischen Formel mit der ganzen Zahl sechs ihre Summenformel. Im Gegensatz dazu stellt die Strukturformel die Beziehung zwischen den einzelnen Atomen grafisch dar Die chemischen Symbole stellen Atome dar, und kurze Linien bezeichnen chemische Bindungen. Einfache Linien stellen Einfachbindungen dar, während zwei und drei Linien Doppel-bzw.

Dreifachbindungen kennzeichnen. Erweiterte Modelle der Strukturformel wie die perspektivische Zeichnung, das Kugel-und Stabmodell oder das raumfüllende Modell bieten verschiedene dreidimensionale Perspektiven der molekularen Struktur. Von den drei chemischen Formeln liefert eine Strukturformel die meisten Informationen über das chemische Material, gefolgt von der Summenformel.

Die empirische Formel ist am wenigsten aussagekräftig.

Explore More Videos

JoVE Core JoVE Core Chemistry Chapter 3 JoVE Core Chemistry Lesson 838

Related Videos

Moleküle und Verbindungen

02:37

Moleküle und Verbindungen

Molecules, Compounds, and Chemical Equations

65.8K Aufrufe

Chemische Formeln

02:51

Chemische Formeln

Molecules, Compounds, and Chemical Equations

59.0K Aufrufe

Molekulare Modelle

02:00

Molekulare Modelle

Molecules, Compounds, and Chemical Equations

42.5K Aufrufe

Klassifizierung von Elementen und Verbindungen

02:54

Klassifizierung von Elementen und Verbindungen

Molecules, Compounds, and Chemical Equations

71.5K Aufrufe

Ionische Verbindungen: Formeln und Nomenklatur

03:34

Ionische Verbindungen: Formeln und Nomenklatur

Molecules, Compounds, and Chemical Equations

83.8K Aufrufe

Molekulare Verbindungen: Formeln und Nomenklatur

03:10

Molekulare Verbindungen: Formeln und Nomenklatur

Molecules, Compounds, and Chemical Equations

54.0K Aufrufe

Organische Verbindungen

03:02

Organische Verbindungen

Molecules, Compounds, and Chemical Equations

55.2K Aufrufe

Formelmasse- und Molkonzepte von Verbindungen

02:55

Formelmasse- und Molkonzepte von Verbindungen

Molecules, Compounds, and Chemical Equations

77.8K Aufrufe

Experimentelle Bestimmung chemischer Formeln

02:36

Experimentelle Bestimmung chemischer Formeln

Molecules, Compounds, and Chemical Equations

44.8K Aufrufe

Chemische Gleichungen

03:10

Chemische Gleichungen

Molecules, Compounds, and Chemical Equations

77.1K Aufrufe

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code