-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

DE

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

German

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Molecular Biology
Transkriptionsabschwächung in Prokaryoten
Transkriptionsabschwächung in Prokaryoten
JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
Transcription Attenuation in Prokaryotes

11.1: Transkriptionsabschwächung in Prokaryoten

17,267 Views
02:42 min
November 23, 2020
AI Banner

Please note that some of the translations on this page are AI generated. Click here for the English version.

Overview

Transcriptional attenuation occurs when RNA transcription is prematurely terminated due to the formation of a terminator mRNA hairpin structure.  Bacteria use these hairpins to regulate the transcription process and control the synthesis of several amino acids including histidine, lysine, threonine, and phenylalanine. Transcription attenuation takes place in the non-coding regions of mRNA.

There are several different mechanisms used to attenuate transcription. In ribosome mediated transcriptional attenuation, the movement of a ribosome on the transcript is stalled or proceeds forward depending upon the availability of the tRNAs charged with a specific amino acid. High amino acid concentrations allow the ribosome to move forward leading to the formation of the terminator structure; deficiency of the amino acid stalls the ribosome and causes formation of the anti-terminator structure. The trp operon in E. coli, discussed below, is a good example of this type of mechanism. tRNA mediated transcriptional attenuation, as observed in trp operon of Lactococcus lactis, depends on an RNA-RNA interaction. When uncharged tRNAs are present in sufficient numbers, they directly bind to the mRNA and stabilize the anti-terminator structure. Transcriptional attenuation is also known to be mediated by proteins as found in bgl (beta-glucoside) operon in E. coli.  This involves an RNA—protein interaction where a protein binds to the transcript and regulates the formation of an anti-terminator structure. More recently, another transcriptional attenuation mechanism was discovered where small metabolites like thiamine were observed to regulate transcription by directly binding to the non-coding mRNA segments, also known as riboswitches. Riboswitches can form a terminator or an anti-terminator structure depending upon the concentration and nature of a metabolite. 

Trp Operon

The trp operon in E. coli contains a 140 nucleotide leader sequence before its first structural gene. This leader sequence has four distinct segments – 1 through 4– and regulates the transcription of the downstream structural genes. Segment  1 can form a hairpin structure with segment  2. This 1-2 hairpin structure is known as a pause structure, as during transcription, it stalls RNA polymerase until the ribosome binds the newly transcribed RNA. This synchronizes transcription and translation in bacteria.  When tryptophan concentrations are low, a hairpin structure forms between segments 2 and 3, known as the anti-terminator structure. This anti-terminator structure allows the continuous transcription of the downstream genes which produce enzymes for tryptophan synthesis. In contrast, when tryptophan concentrations are sufficient, a hairpin structure forms between segments 3 and 4, called the terminator structure. Along with a  series of uracil bases that follow, the terminator structure causes RNA polymerase to dissociate from the RNA and template DNA strands, resulting in the termination of the transcription.

Transcript

Transkriptionelle Abschwächung ist die vorzeitige Beendigung der Transkription, um die nachgeschaltete Genexpression zu verhindern. Dies ist eine von mehreren Strategien, die Bakterien anwenden, um die Synthese von Biomolekülen entsprechend ihren Stoffwechselbedürfnissen zu regulieren.

Die transkriptionelle Abschwächung wurde erstmals in E. coli am trp-Operon identifiziert. Das Operon enthält einen Promotor und Operator sowie fünf Gene, trp A bis E, die für Enzyme kodieren, die für die Tryptophansynthese benötigt werden.

Vor dem ersten Gen trp E hat das trp-Operon eine Leader-Sequenz, die für mRNA mit vier verschiedenen Segmenten kodiert, die von 1 bis 4 nummeriert sind.

Ein Transkriptions-Antiterminator entsteht, wenn sich Segment 3 mit Segment 2 zu einer Haarnadelstruktur faltet. Alternativ tritt ein Transkriptionsterminator auf, wenn Segment 3 eine Haarnadelstruktur mit Segment 4 bildet, sodass Segment 2 stattdessen eine Haarnadel mit Segment 1 bilden kann.

Bei Bakterien können Transkription und Translation gleichzeitig stattfinden. Sobald das 5'-Ende der Boten-RNA durch die RNA-Polymerase synthetisiert wird, kann ein Ribosom binden und mit der Proteinsynthese beginnen.

Segment 1 des trp-Operons enthält zwei Tryptophan-Codons. Wenn das Ribosom auf diese Codons trifft und ein hoher Tryptophangehalt vorhanden ist, bindet die mit Tryptophan beladene Tryptophanyl-tRNA schnell an die Codons, so dass sich das Ribosom weiter bewegen kann.

Wenn das Ribosom Segment 2 erreicht, steht dieses Segment nicht mehr zur Verfügung, um an Segment 3 zu binden. Segment 3 bildet dann mit Segment 4 die Terminator-Haarnadel.

Dieser Terminator bewirkt, dass sich die RNA-Polymerase von der DNA-Matrize löst und die Synthese der wachsenden mRNA stoppt. Dies stellt sicher, dass die Gene, die für die Tryptophansynthese benötigt werden, nicht transkribiert werden, wenn Tryptophan leicht verfügbar ist.

Wenn der Tryptophan-Spiegel jedoch niedrig ist, gibt es nicht genügend Tryptophanyl-tRNA, um an die Codons in Segment 1 zu binden. Dies führt dazu, dass das Ribosom an diesen Codons ins Stocken gerät.

Nun bildet Segment 2 die Anti-Terminator-Haarnadel mit Segment 3, und die Abschluss-Haarnadel kann sich nicht zwischen den Segmenten 3 und 4 bilden.

Das Fehlen des Terminators ermöglicht es der RNA-Polymerase, ihre Transkription des trp-Operons fortzusetzen.

Explore More Videos

Transkriptionsdämpfung Prokaryoten Regulation der Genexpression Bakterien Trp-Operon Leader-Sequenz MRNA Transkriptions-Antiterminator Transkriptionsterminator RNA-Polymerase Ribosom Tryptophan-Codons

Related Videos

Transkriptionsabschwächung in Prokaryoten

02:42

Transkriptionsabschwächung in Prokaryoten

Additional Roles of RNA

17.3K Aufrufe

Riboswitches

01:56

Riboswitches

Additional Roles of RNA

9.0K Aufrufe

RNA-Editing

02:23

RNA-Editing

Additional Roles of RNA

9.4K Aufrufe

Regulierter mRNA-Transport

02:22

Regulierter mRNA-Transport

Additional Roles of RNA

6.6K Aufrufe

Leaky Scanning

02:28

Leaky Scanning

Additional Roles of RNA

5.4K Aufrufe

mRNA-Stabilität und Genexpression

02:51

mRNA-Stabilität und Genexpression

Additional Roles of RNA

6.0K Aufrufe

RNA-Interferenz

RNA-Interferenz

Additional Roles of RNA

7.1K Aufrufe

MicroRNAs

MicroRNAs

Additional Roles of RNA

10.9K Aufrufe

siRNA -Small interfering RNAs

02:30

siRNA -Small interfering RNAs

Additional Roles of RNA

17.6K Aufrufe

piRNA - Piwi-interacting RNAs

02:57

piRNA - Piwi-interacting RNAs

Additional Roles of RNA

7.2K Aufrufe

CRISPR und crRNAs

02:53

CRISPR und crRNAs

Additional Roles of RNA

18.1K Aufrufe

lncRNA - Long non-coding RNAs

02:39

lncRNA - Long non-coding RNAs

Additional Roles of RNA

9.4K Aufrufe

Ribozyme

02:47

Ribozyme

Additional Roles of RNA

13.0K Aufrufe

Bedingungen der frühen Erde

Bedingungen der frühen Erde

Additional Roles of RNA

2.4K Aufrufe

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code