-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

DE

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

German

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Cell Biology
Kooperative allosterische Übergänge
Kooperative allosterische Übergänge
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Cooperative Allosteric Transitions

6.5: Kooperative allosterische Übergänge

2,516 Views
01:58 min
April 30, 2023
AI Banner

Please note that some of the translations on this page are AI generated. Click here for the English version.

Overview

Cooperative allosteric transitions can occur in multimeric proteins, where each subunit of the protein has its own ligand-binding site. When a ligand binds to any of these subunits, it triggers a conformational change that affects the binding sites in the other subunits; this can change the affinity of the other sites for their respective ligands. The ability of the protein to change the shape of its binding site is attributed to the presence of a mix of flexible and stable segments in the structure.  A molecule that triggers this change is known as a modulator.

Two models are often used to explain cooperativity in multimeric proteins: the concerted and the sequential model. The concerted model, also known as the all-or-none model, hypothesizes that all the subunits of a multimeric protein  switch simultaneously between the “on” and “off” conformations. In the “on” form, the binding sites have a high affinity for their respective ligands, and in the “off” form, the binding sites have a low affinity. When a ligand binds to any one of the subunits, it promotes the conversion to the high-affinity form, simultaneously changing the conformation of all other binding sites of the protein. Although a ligand can bind to either form, it is easier for it to bind when in the high-affinity form.

The sequential model assumes that each subunit of a multimeric protein can exist independently in an “on” or “off” conformation, that is in either the low or high-affinity form, regardless of the state of the other subunits.  Binding of a ligand to a subunit changes the equilibrium between the low and high-affinity forms such that it is more likely for the subunit to be in high-affinity form.  Additionally, a ligand binding on one subunit shifts the equilibrium for the other subunits in the protein. This increases the likelihood that once one ligand is bound, another ligand will bind to a different subunit.  This cooperativity increases the sensitivity of the protein to ligand concentration. A ligand binding at a single site can change the affinity on the entire protein molecule, thereby enabling a rapid response at low concentrations.

Transcript

Viele Proteine haben mehrere Untereinheiten, wobei jede Untereinheit eine separate Ligandenbindungsstelle enthält.

Wenn ein Molekül, ein sogenannter Modulator, an eine der Untereinheiten bindet, löst es eine Konformationsänderung in den Bindungsstellen der anderen Untereinheiten aus, wodurch sich ihre Affinität zu ihren jeweiligen Liganden ändert. Dies wird als kooperativer allosterischer Übergang bezeichnet und kann durch verschiedene theoretische Modelle erklärt werden.

Das konzertierte oder "Alles-oder-Nichts"-Modell geht davon aus, dass alle Untereinheiten zusammen in einer "aus"- oder "ein"-Konformation existieren.

Die Bindung kann in beiden Formen erfolgen, jedoch hat der "Ein"-Zustand eine höhere Affinität für den Liganden als der "Aus"-Zustand. Wenn ein Ligand an eine der Untereinheiten bindet, fördert er die gleichzeitige Umwandlung aller Bindungsstellen in die hochaffine Form.

Die Kooperativität kann auch durch das sequentielle Modell erklärt werden, das davon ausgeht, dass jede Untereinheit unabhängig voneinander in einem Zustand mit hoher oder niedriger Affinität existieren kann, sich aber eher im Zustand mit hoher Affinität befindet, wenn der Ligand an eine der Untereinheiten gebunden ist.

Die Bindungsstellen allosterischer Proteine sind in der Regel eine Mischung aus flexiblen und festen Segmenten der Aminosäurekette. Wenn ein Ligand bindet, werden diese instabilen Teile in einer bestimmten Konformation stabilisiert, was sich auf die Form der Bindungsstellen an den anderen Untereinheiten auswirkt.

Hämoglobin ist ein Beispiel für ein tetrameres Protein, das einen kooperativen allosterischen Übergang durchläuft, wenn Sauerstoff bindet.

Jede Untereinheit des Hämoglobins hat eine einzige Bindungsstelle. Wenn ein Sauerstoffmolekül an eine einzelne Untereinheit bindet, erhöht die Kooperativität die Affinität zu Sauerstoff an den verbleibenden Bindungsstellen, wodurch es für Sauerstoff einfacher wird, an ein Hämoglobinmolekül zu binden, an das bereits Sauerstoff gebunden ist.

Key Terms and Definitions

  • Cooperative ligand binding - A process in biology where ligands bind to a protein molecule in a manner that enhances or suppresses the function of the protein.
  • Allosteric transition - The conformational change in a protein's structure upon binding of an effector or ligand molecule.
  • Cooperativity - A form of allosteric activation where a protein's binding to a ligand enhances its affinity for more of that ligand.
  • Sequential Transitions - A model that considers that binding sites for ligands are not equivalent and can change upon ligand binding.
  • Concerted Model - A model in which all subunits of a protein change simultaneously upon ligand binding.

Learning Objectives

  • Define Cooperative ligand binding - Explain what it is (e.g., ligand biology).
  • Contrast Allosteric vs Cooperative binding - Explain key differences (e.g., binding cooperativity).
  • Explore models of cooperativity - Describe scenario (e.g., sequential transitions, concerted model).
  • Explain Mechanism of allosteric transition - Expound on the process of conformational changes in protein structures.
  • Apply cooperative binding in context - Discuss its role and significance in biological processes.

Questions that this video will help you answer

  • What is cooperative ligand binding and how does it affect protein function?
  • How does allosteric transition differ from cooperative binding?
  • What are the key points that differentiate the sequential model from the concerted model of cooperativity?

This video is also useful for

  • Students - Understand How cooperative and allosteric binding supports protein functionality and biology.
  • Educators - Provides a clear framework it helps with teaching the concept of cooperativity and protein function.
  • Researchers - Cooperativity and allosteric transitions hold significant relevance for biological research, molecular biology and protein design.
  • Science Enthusiasts - Offer insights into protein functionality, stimulating broader interest and curiosity value.

Explore More Videos

Kooperative allosterische Übergänge Proteine Untereinheiten Ligandenbindungsstelle Modulator Konformationsänderung Affinität theoretische Modelle konzertiertes Modell Alles-oder-Nichts-Modell sequentielles Modell flexible Segmente feste Segmente Aminosäurekette Hämoglobin

Related Videos

Liganden-Bindungsstellen

Liganden-Bindungsstellen

Protein Function

8.3K Aufrufe

Protein-Protein-Grenzflächen

Protein-Protein-Grenzflächen

Protein Function

4.1K Aufrufe

Konservierte Bindungsstellen

Konservierte Bindungsstellen

Protein Function

1.8K Aufrufe

Cofaktoren und Coenzyme

01:24

Cofaktoren und Coenzyme

Protein Function

12.2K Aufrufe

Kooperative allosterische Übergänge

Kooperative allosterische Übergänge

Protein Function

2.5K Aufrufe

Proteinkinasen und Phosphatasen

Proteinkinasen und Phosphatasen

Protein Function

4.0K Aufrufe

GTPasen und ihre Regulierung

GTPasen und ihre Regulierung

Protein Function

2.5K Aufrufe

Kovalent verknüpfte Proteinregulatoren

Kovalent verknüpfte Proteinregulatoren

Protein Function

1.8K Aufrufe

Proteinkomplexe mit austauschbaren Teilen

Proteinkomplexe mit austauschbaren Teilen

Protein Function

2.0K Aufrufe

Mechanische Proteinfunktion

Mechanische Proteinfunktion

Protein Function

2.2K Aufrufe

Funktion von Strukturproteinen

Funktion von Strukturproteinen

Protein Function

2.9K Aufrufe

Protein-Netzwerke

Protein-Netzwerke

Protein Function

2.5K Aufrufe

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code