-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

DE

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

German

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Core
Cell Biology
Kovalent gebunden Protein-Regulatoren
Kovalent gebunden Protein-Regulatoren
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Covalently Linked Protein Regulators

6.8: Kovalent gebunden Protein-Regulatoren

1,827 Views
02:04 min
April 30, 2023
AI Banner

Please note that some of the translations on this page are AI generated. Click here for the English version.

Overview

Proteins can undergo many types of post-translational modifications, often in response to changes in their environment. These modifications play an important role in the function and stability of these proteins. Covalently linked molecules include functional groups, such as methyl, acetyl, and phosphate groups, and also small proteins, such as ubiquitin. There are around 200 different types of covalent regulators that have been identified.

These groups modify specific amino acids in a protein. Phosphate groups can only be covalently attached to the amino acids serine, threonine, and tyrosine, whereas methyl and acetyl groups can only be linked to lysine.  These groups are added to and removed from a protein by an enzyme or pair of enzymes.    For example, an acetyltransferase adds an acetyl group to a protein, and a deacetylase can remove it. Each of these modifiers can have different effects on the protein to which it is attached depending on the number and location of the modifications. When a single ubiquitin molecule is covalently linked to a certain cell surface receptor, this protein is targeted for endocytosis; on the other hand, when multiple ubiquitins linked together are attached to this protein, it is marked as a target for proteolytic degradation.

A single protein can undergo multiple modifications simultaneously to control its function. One well-known example of a protein regulated by multiple covalent modifications is the tumor-suppressor protein, p53.  p53 undergoes a variety of modifications in response to various types of stress, including radiation and carcinogens. Some modifications include phosphorylation, acetylation, and sumoylation in response to UV and gamma radiations. The sites and types of modifications can vary depending on the stressor. Studies have shown that UV and gamma radiation can result in the phosphorylation of serine 33, but serine 392 can be phosphorylated when exposed to UV but not gamma radiation. Other kinds of stress, such as exposure to hypoxia, anti‐metabolites, and actinomycin D, can result in the acetylation of p53. The modifications can also vary between different cell types and organisms.

Transcript

Viele Proteine werden durch kovalent verknüpfte Moleküle reguliert, darunter funktionelle Gruppen wie Methyl- oder Acetyleinheiten und kleine Proteine wie Ubiquitin.

Kovalente Bindungen treten an spezifischen Aminosäuren in der Polypeptidkette auf. Zum Beispiel sind Phosphatgruppen kovalent an Serin, Threonin oder Tyrosin gebunden; Methyl- und Acetylgruppen sind an Lysin gebunden; und Ubiquitin ist mit Lysin-, Cystein-, Serin- oder Threoninresten verbunden.

Ein Enzym oder ein Paar von Enzymen katalysiert reversibel diese posttranslationalen Modifikationen. Eine Acetyltransferase kann ein Protein acetylieren, während eine Deacetylase die Gruppe später entfernen kann.

Diese Modifikationen können die Funktion oder die Lokalisation eines Proteins in einer Zelle verändern.

Zum Beispiel reguliert die Acetylierung von Histonproteinen die Genexpression, indem sie die DNA-Struktur öffnet, um die Gentranskription zu aktivieren. Andererseits ist bekannt, dass die Methylierung von Histonproteinen die Transkription unterdrückt, indem sie die Struktur strafft.

Ein weiteres Beispiel ist p53, ein Multidomänen-Tumorsuppressorprotein, das als Reaktion auf Stress mehrere kovalente Modifikationen durchläuft. Die Exposition gegenüber DNA-schädigenden Stoffen wie UV- und Gammastrahlung kann zu einer Phosphorylierung des Proteins führen.

Die Phosphorylierung verbessert die Stabilität und aktiviert p53, wodurch es an die durch die Strahlung geschädigte DNA bindet und Zellen mit mutierter DNA sich unkontrolliert teilen.

Zusätzlich zur Phosphorylierung ermöglichen verschiedene Arten von Modifikationen, die an einem einzelnen Proteinmolekül auftreten, wie z. B. p53, die genaue Kontrolle seiner Funktionen wie Zellzyklusarrest, DNA-Reparatur und Apoptose einer Zelle.

Key Terms and Definitions

  • Post-Translational Modification - Covalent modifications made to proteins after synthesis.
  • Covalently Linked Proteins - Proteins that have been chemically bonded together.
  • Protein Degradation - The process by which proteins are broken down in cells.
  • Covalent Regulation - Control of protein function by adding/removing chemical groups.
  • Ubiquitination - A post-translational modification involving the attachment of ubiquitin to proteins.

Learning Objectives

  • Define Post-Translational Modification - The changes made to proteins after they are synthesized (e.g., covalently linked).
  • Contrast Pre and Post-Translational Modification - Understand the differences and unique functions (e.g., covalent regulation vs ubiquitination).
  • Explore Examples - How proteins are targeted for degradation (e.g., ubiquitination).
  • Explain the Process - How post-translational modifications regulate protein functions.
  • Apply in Context - How post-translational modifications impact biological systems.

Questions that this video will help you answer

  • What is Post-Translational Modification and why is it important?
  • What are the different types of Post-Translational Modifications?
  • How does Post-Translational Modification regulate protein function?

This video is also useful for

  • Students - Grasp the complex nature of protein structure and function.
  • Educators - Provides a detailed overview of an advanced topic in molecular biology.
  • Researchers - Essential understanding for genetic research and drug discovery efforts.
  • Science Enthusiasts - Delve into the intricacies of protein regulation and modification.

Explore More Videos

Kovalent verknüpfte Proteinregulatoren funktionelle Gruppen Methyleinheiten Acetyleinheiten Ubiquitin kovalente Bindungen Aminosäuren Polypeptidkette posttranslationale Modifikationen Acetyltransferase Deacetylase Histonproteine Genexpression Methylierung p53-Protein Phosphorylierung DNA-Schäden

Related Videos

Liganden-Bindungsstellen

Liganden-Bindungsstellen

Protein Function

8.3K Aufrufe

Protein-Protein-Grenzflächen

Protein-Protein-Grenzflächen

Protein Function

4.2K Aufrufe

Konservierte Bindungsstellen

Konservierte Bindungsstellen

Protein Function

1.8K Aufrufe

Cofaktoren und Coenzyme

01:24

Cofaktoren und Coenzyme

Protein Function

12.3K Aufrufe

Kooperative allosterische Übergänge

Kooperative allosterische Übergänge

Protein Function

2.5K Aufrufe

Proteinkinasen und Phosphatasen

Proteinkinasen und Phosphatasen

Protein Function

4.1K Aufrufe

GTPasen und ihre Regulierung

GTPasen und ihre Regulierung

Protein Function

2.6K Aufrufe

Kovalent verknüpfte Proteinregulatoren

Kovalent verknüpfte Proteinregulatoren

Protein Function

1.8K Aufrufe

Proteinkomplexe mit austauschbaren Teilen

Proteinkomplexe mit austauschbaren Teilen

Protein Function

2.0K Aufrufe

Mechanische Proteinfunktion

Mechanische Proteinfunktion

Protein Function

2.2K Aufrufe

Funktion von Strukturproteinen

Funktion von Strukturproteinen

Protein Function

3.0K Aufrufe

Protein-Netzwerke

Protein-Netzwerke

Protein Function

2.6K Aufrufe

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code