Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

リモートマイクプローブを用いた非定常面圧の測定

Published: December 3, 2016 doi: 10.3791/53627

Introduction

表面上の流体の流れは、一般的に不安定と不安定な面圧(USP)につながる乱れにつながります。流れに誘導される音と振動は、多くの場合、この不安定の直接の結果です。冷却ファン、プロペラ、および風力タービンによって生成された放射音は、USP 1に関連したソースによって支配されています。乱流におけるUSPの空間的および時間的特性の測定は、一般に、放射音を予測するために必要とされます。

USPの統計的特徴付けは、一般に、自動スペクトル密度の形で与えられ、二点のクロススペクトル密度、及び空間相関関数の2、3。用途に応じて変化することができ、必要な周波数応答。多くの風洞の用途では、10キロヘルツ〜20キロヘルツの応答が十分です。乱流運動の小さなスケールは、多くの場合、1mm未満であることを検知エリアとセンサーの間隔が必要です。

エクステnsive実験的研究は、乱流誘導性の圧力変動を得るために行われています。直接法は、フラッシュマウント型埋め込みセンサーを使用しています。各センサは、一つだけの離散点での圧力変動を測定することができるので、この方法は、多くの場合、マイクの大きな配列を採用しています。この方法で利用される典型的なセンサはGautschi 4によって示唆された圧電トランスデューサ、です。圧電センサのアレイは、高価になることができ、測定の周波数範囲は、しばしば、10kHz未満です。

直接表面実装マイクロフォンは、多くの場合、安価なUSPセンサ5として使用されます。マイクロホンは、低速の流れのために実質的な利点である高感度を有します。圧力の大きな振幅変動が存在する場合しかし、これは、センサの飽和のリスクをもたらします。この方法は、大きな曲率、不連続、またはセンサ全体を含めるにはあまりにも薄い形状を有する表面には適していません。

6に薄い膜を使用することです。時間と空間依存の振動運動を測定した後、膜の既知の機械的性質を用いて、圧力の統計を表面に変換されます。この方法は慎重に設計、実装、および膜の動的応答の正確なキャリブレーションが必要です。さらに、レーザードップラー振動計などの振動測定装置は、高価です。最後に、この方法は、平らな表面に適用することができます。

感圧塗料(PSP)は、不安定な面圧を測定するために使用できる別の技術です。この技術は、それらが特定の波長の光が照射されるように内のより高いエネルギー状態に励起される分子を引き起こす透明ポリマーバインダーでコーティングされる表面を必要とします。分子酸素消光を起こすように、エネルギーが再あります面圧7に反比例すること発光を生じ、酸素分圧に比例した速度での光としてリース。マイクロホンと比較した場合、PSP方法の主な欠点は、測定の比較的低感度です。これは、比較的高速に流れるPSPの適用を制限します。

現在の通信は、リモートマイクプローブ(RMP)を使用するUSPする方法が記載されています。この方法は、最初Englundとリチャーズ8により説明しました。コンセプトは、中空管で表面の圧力タップに接続されている標準的な小型のマイクを使用しています。モデル表面における非定常圧力は、音波の形でチューブ内に移動します。音波を測定するために、チューブに垂直に取り付けられているマイクロホンを可能にするために「導波路」としてチューブ働きます。波は次いで大振幅の音響Rを除去するのに十分な長さである別のチューブに続行しますeflections。

Englundとリチャーズは、RMPの動的応答を決定するために、ベルグとTijdeman 9によって概説分析的アプローチを適用しました。 Perrenes及びロジャー10は、高揚力装置の2次元翼形上の面圧を測定するためにRMPを利用しました。彼らは、2つの別々のステップ変化を経て2.5ミリメートルに0.7ミリメートルから展開27-cmの長剛性管に接続された表面で直径0.5mmの毛細管を有するプローブを開発しました。各ステップ変化は、管の音響インピーダンスの比較的大きな変化をもたらしました。 LeclercqとBohineust 11は、乱流境界層の下壁の圧力場を検討しました。 Franzoniとエリオット12によって示唆されるように彼らは、一定の直径のRMPを使用しました。しかし、動的応答は、限られた周波数範囲で十分に高いです。 Arguillat 13車室内に送信ノイズを研究するRMPを設計しました。彼らは、試験しましたマイクロホンに圧力変動を実施するための様々なチューブ。 Yangら 14は、このレポートに導入方法と同様であるチューブ伝達関数法を用いてチューブの歪みを補正します。 Hoarau 15は、分離領域の下流壁圧力トレースを検討しました。彼らは設計RMPSは、一定の内径を有しており、チューブは完全に非剛性でした。

以前の研究によれば、RMPSを用いて得られた面圧測定の精度は、マイクロフォン、圧力に対する表面圧力に関するプローブの周波数に依存する伝達関数の決意時主として依存しています。次のセクションでは、シンプルかつ効果的であるRMPジオメトリを説明します。実験および分析方法は、正確にRMPの動的応答を決定するために導入され、検証されます。解析モデルは、OであるためにRMPを可能にしますアプリケーションの潜在的に広い範囲のために設計段階でptimized。

RMPSは、広範囲の周波数にわたって圧力変動を測定することができます。比較的高い空間分解能は、空間的に分布する非定常圧力場16の特性に関する詳細な情報を提供することができます。プローブが小さいように、RMPSは、大きな曲率または制限された間隔17のような複雑な幾何学的形状、上圧力変動を測定するために利用することができます。また、表面のタップとマイクロフォンセンサを接続するチューブは、マイクに誘起圧力変動の大きさを低減することができます。これにより、RMPセンサジオメトリおよびパラメータの適切な設計は、モデル表面に直接マイクを搭載フラッシュと比較して有意に少ない制限であるUSP特性を得るための方法を与えます。

RMPのRMPThe一般的な構造の構成は、図1に示されています

このデモでは、RMPの設計は、TURBの下表面圧力変動の測定に最適化しましたulent 図2に示すように、流れ方向の圧力勾配なしの境界層、第二のチューブを除去しました。第1のチューブの二つの異なる長さの効果が観察されました。第1のチューブは、0.5mmの内径0.81 mmで外径のステンレス鋼から構築しました。第1のチューブの長さは、それぞれ、5.35および10.40センチメートルました。クレードルに組み込まれた拡張部の注入口の内径は、0.5mmであり、出口の内径が散逸終端の内径と同一であった1.25 mmでした。拡大部の角度は7°でした。スムーズに無響終端で伸長部を接続するために1.25ミリメートル径のクレードルに穴がありました。検出領域は、垂直な0.75ミリメートルの穴を通って1.25ミリメートルの穴に接続されていました。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

実験の調製

  1. RMPを構築するための適切なマイクを選択します。関心の周波数範囲内のマイクの周波数範囲を使用してください。
    注記:この実験では、100〜10,000 Hzの間の圧力変動が重要です。選択されたマイクロフォンの測定周波数範囲は100〜10,000ヘルツです。サイズのための具体的な基準が存在しないが、マイクロホンの大きさは、できるだけ小さくすべきです。
  2. 付録に記載されている分析法を用いて、RMPシステムの感度と周波数応答を推定します。チューブおよび構造の寸法を変化させることにより、RMPの感度と周波数応答を調整します。
  3. 5.25センチメートル長い片に0.5ミリメートル、内径ステンレス鋼管をカットするドレメルを使用してください。
  4. はさみで、4.75メートル、長片に1.25 mmの内径軟質チューブをカット。
  5. プレキシグラスの一部をカットするためにフライス盤を使用します直方体。直方体の長さ、幅、高さはそれぞれ、2.54センチメートル1.27センチ、1.27 cmでなければなりません。
  6. 図2に示すように、プレキシグラスのクレードルの0.81、2、2.56、および0.76ミリメートル径の穴をあけ、。
  7. 図2に示すように、プレキシグラスクレードルのテーパ部を作るために、針のドリルを使用してください。
  8. メーカーが提供するマニュアルのマイク感度を見上げ、またはウォン18によって導入された方法を使用してマイクを調整します。
  9. 図2に示すように、プレキシガラスクレードルにマイクを装着し、エポキシを使用してマイクを固定します。
  10. ステンレス鋼管と軟質チューブは、プレキシグラスクレードルに接続し、エポキシでそれらを修正します。
  11. 測定位置でのモデル表面に垂直に0.81ミリメートル径の穴を開けます。

2.実験のセットアップ

  1. の主要なステンレス鋼管をマウントフラッシュモデル表面にRMPセンサーおよび図2に示すように、反対側のモデル表面にステンレス製のチューブを固定するためにエポキシ樹脂を追加します。
  2. システムを汚染から寄生ノイズを防止するために、音響フォームとRMPを囲みます。
  3. 国道トンネルのテストセクションのうち、すべての電気配線。
  4. 国道トンネルのテストセクションのうち柔らかい無響チューブ。
  5. 非定常圧力と同時に平均静圧の測定値を得るために、圧力変換器にソフト無響管の端を接続します。
  6. 低雑音増幅器およびデータ収集システムにRMPを接続します。
  7. 利得係数の値がケースにケースから変更することができます10ノートに、増幅器の利得係数を設定します。

3.キャリブレーション

  1. 高品質であり、周波数に依存しない感度を有する基準マイクロホンを選択します。
  2. 基準マイクロを接続します電話増幅器の入力およびデータ収集システムに増幅器の出力を接続します。
  3. 入力ゲインと10デシベルに、アンプの出力ゲインの両方を設定します。利得係数は、異なる測定条件下で変化させることができることに留意されたいです。
  4. 補足図に示すように、ピストンホンに基準マイクロホンを挿入します。
  5. ピストンホンをオンにします。
  6. 4000 Hzに取得頻度を設定します。
  7. 24万にサンプル数を設定します。
  8. 基準マイクロホンからの電圧出力を取得し、保存します。
  9. 基準マイクロホンの校正定数を計算します。較正定数、C refは 、基準マイクロホンの電圧出力の標準偏差にピストンホン生産音圧の標準偏差の比です。
  10. キャリブレーションプロセス(3.8および3.9ステップ)を数回繰り返します。キャリブレーション定数として、平均値、Cのリファレンスを使用してください。
  11. <李>は、図1に示すように圧力変動が測定され、その上に固体表面に対して垂直に基準マイクロホンを配置します。
  12. RMPタップと基準マイクロホンの中心を合わせます。基準マイクロホンと1ミリメートルのRMPタップ間の距離を使用してください。
  13. テストモデルの近くにスピーカーを配置します。スピーカーおよびこれらの測定のために2.5メートルのマイク間の距離を使用してください。
  14. ファンクション・ジェネレータにスピーカーを接続し、ファンクション・ジェネレータをオンにします。
  15. 0.4 Vに、V RMS、正方形の電圧を意味する所望の音響信号を提供し、ルートを設定するには、ファンクション・ジェネレータの「ホワイトノイズ」オプションを使用します
  16. 最小限にスピーカーの音量を調整します。
  17. スピーカーの電源をオンにします。
  18. スピーカーにダメージを与えることなく、できるだけ高いスピーカーアンプの音量を調整します。ほとんどのスピーカーは目を警告するインジケータライトを持っていることに注意してくださいEのユーザ出力振幅はスピーカ範囲を超えている場合。
  19. 60秒間40,000ヘルツの走査周波数を使用して、基準マイクロホンとRMPの両方の電圧出力から時系列データを取得し、保存します。
  20. スピーカ機能発生器によって生成され、基準マイクロホンによって測定される音圧変動の時系列値を計算します。これは、単に基準マイクロホンから時系列の出力電圧との積であります式3 、その校正定数式4 ; 式(5) 。時系列的な音圧ことに注意してください、 式6また、RMPのタップでの圧力変動です。
  21. RMP Aマイクによって測定時系列音圧の変動を計算します RMPから時系列の電圧出力の生成物は、S- 式(7) 、およびマイク感度、 式8 ; 式9 。 、そのマイクの感度を注意してください式8 、製造業者によって提供されるべきです。
  22. 自動スペクトル密度を計算し、 式10 、の式11 。自動スペクトル密度を計算し、 式12 、の式13 。クロススペクトル密度を計算し、 式14 、 の間に.jpg "/>と式11 。自動スペクトル密度とクロススペクトル密度は、Bendatとピアソル19によって定義されています。
  23. 伝達関数を計算します式15
  24. コヒーレンス関数を計算します式16アスタリスクは複素共役を表します。
  25. 基準マイクロホンを削除してください。
  26. スピーカーや関数発生器の電源を切ります。
  27. スピーカーを取り外します。

4.データ集録

  1. 風洞をオンにします。
  2. 時系列の電圧出力を記録し、 式(17)データ収集システムとRMPの。 40,000ヘルツの走査周波数を使用してください。 64秒の取得期間を使用してください。
  3. 風洞をオフにします。

  1. 、音圧の変動を計算します式(18) 、としてRMPにマイクで測定しました式19
  2. 自動スペクトル密度を計算し、 式20 、表面の圧力変動としての式(21)ここで、 式22音圧変動の自動スペクトル密度は、RMPマイクロホンによって測定されます式(18)

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

2つの代表的なRMPのデザインから校正結果は、このセクションに示されています。最初のものは5.35センチメートル一次管を使用し、2つ目は、10.4センチメートル一次チューブを使用しました。散逸終端は、両方RMPSのための4.75メートルの長さです。

RMPにおける基準マイクロホンによってマイクロホンによって測定された圧力変動との間のコヒーレンスは、 図3に示されている。データは、広範囲の周波数にわたって近単一のコヒーレンス値を示しています。 10 kHz以上の周波数では、コヒーレンスは一般的に高いままですが、コヒーレンスは、いくつかの周波数で間欠的に低下します。この理由の1つは、ラウドスピーカによって生成される音は、これらの周波数で比較的低いことです。これはまた、高周波数でのRMPの感受性の低下から生じ得ます。背景や電気ノイズは、コヒーレンスの損失につながることができます。低コヒーレンス値RMPでマイクと基準マイクロホンによって測定された圧力変動が強く相関していないことを示しています。この研究では、コヒーレンスは、対象の周波数範囲において0.97よりも大きいです。

図4は、両方実験的および解析的に得られた伝達関数の大きさを示しています。分析方法は、周波数範囲のほとんどを横切って動的応答を予測する上で正確です。中高周波数範囲で意見の相違は、このような配管接合部でのバリまたはわずかなミスマッチとしてRMPの小さな収差の結果であると仮定されています。

100 Hzから500 Hzの間の周波数での伝達関数の大きさの振動が長く無響終端に音響反射に関連しています。これらは、大きさが1または2デシベルのために一般的です。広報内の音響反射imaryチューブは、より高い周波数で振動で明らかです。

図5は、伝達関数の位相シフトを示しています。分析方法は、わずかに位相シフトの勾配を過大評価します。約1.6%であり、測定の不確かさは、矛盾が生じることができますが、この過大評価は、分析方法に適用される音響速度に影響を与えるであろう、推定管の長さで、または温度変化によって小さな誤差に起因すると考えられているの理由一定の傾向。

USP測定は平板乱流境界層流で取得しました。この方法は、理由実験の単純さとUSPのためのデータの重要な体が平板境界層に存在するため、この通信のために選択しました。レイノルズのいくつかの値でRMPによって測定し、自動スペクトル密度数は、 図6に示されている。圧力スペクトルは、壁剪断変位厚さ、均一な流速によって正規化しました。ライトグレーの領域は、グッディ20によってコンパイルされた様々な研究グループからのデータのすべてが含まれています。濃い灰色の帯は非常に大きなレイノルズ数に相当する圧力スペクトルを表しています。現在の測定値は、先行研究で観察された測定値の広がりの範囲内であり、グッディによって示されるように、レイノルズ数と共に減少する大きさの予想される傾向を示しています。ノートはまた測定された圧力スペクトルは、正確な周波数依存校正機能が適用されたことを示す、伝達関数に存在する高調波のピークのいずれも含まないこと。

図1
図1:RMP構造とセットアップのための回路図は、回路図は、一般的な指名打者を示しています RMPのGN。 RMPの詳細は、様々な測定条件のための設計を最適化するために調整することができる。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図2
図2:寸法とRMPのセットアップは、本研究では標準的な乱流境界層の下の面圧を測定するために使用この測定のために利用RMPの設計は、図1に示す構造とは若干異なります;。伸張部は、クレードルに組み込まれている。 この図の拡大版をご覧になるにはこちらをクリックしてください。

/53627/53627fig3.jpg "/>
図3:様々な最初のチューブの長さとRMPSためのコヒーレンス関数 (左)5.35センチメートル第1チューブ及び(右)10.40センチメートル第1のチューブ x軸は周波数(Hz)であり、y軸は、コヒーレンスの値である。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図4
図4:さまざまな最初のチューブの長さとRMPSための伝達関数の大きさ (左)5.35センチメートル第1チューブ及び(右)10.40センチメートル第1のチューブ緑の曲線は理論的予測を表しながら、青い曲線は、実験結果を表します。 X軸は、Hz単位の周波数であり、y軸は、dB単位の伝達関数の大きさです。ターゲット= "_空白">この図の拡大版をご覧になるにはこちらをクリックしてください。

図5
図5:さまざまな最初のチューブの長さとRMPSための伝達関数の位相シフト (左)5.35センチメートル第1チューブ及び(右)10.40センチメートル第1のチューブ青色曲線は、実験結果を示し、緑色の曲線は、理論的予測を表します。 y軸はラジアンでの伝達関数の位相シフトである一方でx軸は、周波数(Hz)である。 この図の拡大版をご覧になるにはこちらをクリックしてください。

図6
図6:さまざまなレイノルズ数下RMPSで測定した表面圧力の自動スペクトル密度。 この図の拡大版をご覧になるにはこちらをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Acknowledgments

本研究では、助成金番号N000141210337、デボラNalchajianとロナルド・ジョスリンの下で海軍研究の米国オフィスからの資金によって可能になりました。

Materials

Name Company Catalog Number Comments
Microphone ACO Pacific (http://www.acopacific.com/) 7016 Used to measure the sound pressure and calibrate the RMP as a reference.
Microphone Knowles (http://www.knowles.com/eng) FG-23629-C36 Used to measure the pressure fluctuation as a part of the RMP.
Microbore Tubing Saint-gobain (http://www.biopharm.saint-gobain.com/en/index.asp) Tygon ND 100-80 Used to dissipate the sound waves as a dissipation termination.
Hypodermic Tubing MicroGroup (http://www.microgroup.com/) 304H21RW Used to connect the surface tap and allow the surface pressure fluctuation to convect to the microphone in the RMP in the form of sound.
Hypodermic Tubing MicroGroup (http://www.microgroup.com/) 304H14H Used to reduce the dissipative effect and allow the surface pressure fluctuation to convect to the microphone in the RMP in the form of sound.
plexiglass Plaskolite (http://www.plaskolite.com/) 1X76204A Used to make cradles which can connect the tubing and the microphone for the RMP.
Data acquisition chassis National Instruments (http://www.ni.com/) PXI-1006 For data acquisition.
Data acquisition channel National Instruments (http://www.ni.com/) PXI-4472 For data acquisiton.
Function generator thinkSRS (http://www.thinksrs.com/) DS360 To generate white noise signal.
Pistonphone B&K (http://www.bksv.com/) 4228 To generate sine waves with constant frequency which will be used to calibrate the reference microphone.
Loudspeaker Mackie (http://www.mackie.com/index.html) HD1531 Used to convert the electrical white noise signal into sound. It is the sound source for calibrating the RMP.
MatLab Mathworks (http://www.mathworks.com/) Used to process experimental data.
LabVIEW National Instruments (http://www.ni.com/) Used control the hardware for data acquisition and record the data.

DOWNLOAD MATERIALS LIST

References

  1. Blake, W. K. Mechanics of Flow-induced sound and vibration. , Academic Press. Orlando, FL. (1986).
  2. Schloemer, H. Effects of pressure gradients on turbulent-boundary-layer wall-pressurefluctuations. J Acoust Soc Am. 42 (1), 93-113 (1967).
  3. Willmarth, W., Wooldridge, C. Measurements of fluctuating pressure at wall beneath a thick turbulent boundary layer. J Fluid Mech. 14 (2), 187-210 (1962).
  4. Gautschi, G. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers. , Springer. Berlin. (2002).
  5. Blake, W. K. A statistical description of pressure and velocity fields at the trailing edges of a flat strut. , David W. Taylor Naval Ship Research and Development Center. Report 4241 (1975).
  6. Huettenbrink, K. B. Lasers in Otorhinolaryngology. , Thieme. (2005).
  7. Bell, J. H., Schairer, E. T., Hand, L. A., Mehta, R. D. Surface Pressure Measurement using Luminescent Coatings. Annu Rev Fluid Mech. 33, 155-205 (2001).
  8. Englund, D., Richards, W. The infinite line pressure probe. ISA Transactions. 24 (2), 11-19 (1985).
  9. Bergh, H., Tijdeman, H. Theoretical and Experimental Results for the Dynamic Response of Pressure Measuring Systems. NRL Report TR F 238. National Aero-and Astronautical Research Inst. , Amsterdam. (1965).
  10. Perennes, S., Roger, M. Aerodynamic noise of a two-dimensional wing with high-lift devices. 4th AIAA/CEAS Aeroacoustics Conference, , Toulouse. (1998).
  11. Leclercq, D., Bohineust, X. Investigation and modeling of the wall pressure field beneath a turbulent boundary layer at low and medium frequencies. J Sound Vibrat. 257 (3), 477-501 (2002).
  12. Franzoni, L. P., Elliott, C. M. An innovative design of a probe-tube attachment for a half in microphone. JASA. 104, 2903-2910 (1998).
  13. Arguillat, B., Ricot, D., Robert, G., Bailly, C. Measurements of the wavenumber-frequency spectrum of wall pressure fluctuations under turbulent flows. Collection of Technical Papers - 11th AIAA/CEAS Aeroacoustics Conference. 1, 722-739 (2005).
  14. Yang, H., Sims-Williams, D., He, L. Unsteady pressure measurement with correction on tubing distortion. Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines. , Springer. Berlin. 521-529 (2006).
  15. Hoarau, C., Boree, J., Laumonier, J., Gervais, Y. Analysis of the wall pressure trace downstream of a separated region using extended proper orthogonal decomposition. Phys Fluids. 18 (5), 055107 (2006).
  16. Bilka, M. J., Paluta, M. R., Silver, J. C. Spatial correlation of measured unsteady surface pressure behind a backward-facing step. EXIF. 56 (2), (2015).
  17. Probsting, S., Gupta, A., Scarano, F., Guan, Y., Morris, S. C. Tomographic PIV for Beveled Trailing Edge Aeroacoustics. 20th AIAA/CEAS Aeroacoustics Conference, , AIAA Paper (2014).
  18. Wong, G. Microphones and Their Calibration. Springer Handbook of Acoustics. , Springer. (2007).
  19. Bendat, J. S., Piersol, A. G. Random data: analysis and measurement procedures. , John Wiley & Sons. New York, NY. 2nd edition (1986).
  20. Goody, M. Empirical spectral model of surface pressure fluctuations. Am Instit Aero Astronaut. 42 (9), 1788-1794 (2004).
  21. Corcos, G. M. Resolution of pressure in turbulence. J Acoust Soc Am. 35 (2), 192-199 (1963).
  22. Tijdeman, H. On the propagation of sound waves in cylindrical tubes. J Sound Vibrat. 39 (1), 1-33 (1975).
  23. Iberall, A. S. Attenuation of oscillatory pressures in instrument lines. J Res Natl Bureau Stand. 45 (1), 85-108 (1950).
  24. Zwikker, C., Kosten, C. Sound Absorbing Materials. , Elsevier. Amsterdam. (1949).

Tags

工学号118、乱流、不安定な表面圧力、空間分解能、周波数応答、振動、分析的予測、マイクロフォン、遠隔マイクロホンプローブ、乱気流音感知領域、動圧、音波、不安定な表面圧力の相互スペクトル密度、コヒーレンス、パワースペクトル密度
リモートマイクプローブを用いた非定常面圧の測定
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Guan, Y., Berntsen, C. R., Bilka, M. More

Guan, Y., Berntsen, C. R., Bilka, M. J., Morris, S. C. The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe. J. Vis. Exp. (118), e53627, doi:10.3791/53627 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter