Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Environment

从产甲烷纯培养物和环境样品中提取辅因子F420 用于分析聚谷氨酸尾部长度

Published: October 14, 2021 doi: 10.3791/62737

Summary

针对纯培养物和环境样品中F420 尾长的液相色谱分离和分析,优化了从纯培养物中提取辅因子F420 的方法。

Abstract

辅因子F420 在许多细菌和古菌分类群的一次和二次代谢中作为氢化物载体起着核心作用。辅因子以其在甲烷生成中的作用而闻名,它促进了热力学上困难的反应。由于不同生物体之间的聚谷氨酸尾巴长度不同,长度剖面分析可能是区分和表征不同生境中不同群体和途径的有力工具。在这里,该协议描述了通过应用固相萃取结合高效液相色谱分析来提取和优化辅因子F420 检测,而这些方法独立于培养或分子生物学方法。该方法用于从土壤、厌氧污泥和纯培养物中的微生物群落中获得辅因子F420 表达的额外信息,并通过峰值实验进行评估。因此,该研究成功地在受控的产甲烷纯培养物以及厌氧消化池污泥和土壤等环境样品中生成了不同的F420 尾长剖面,用于氢营养和碎裂性产甲烷菌。

Introduction

F420是一种广泛但经常被忽视的辅因子,在古菌细菌的一次和二次代谢过程中作为专性双电子氢化物载体起作用12F420是一种5-脱氮黄素,在结构上与黄素相似,其化学和生物学特性与NAD +或NADP +更具可比性。由于氮在异丙沙嗪环的位置5处用碳代替,它是一种强还原剂,因此表现出-340 mV13的低标准氧化还原电位。F420包括一个5-去氮杂黄素环和一个2-磷酸-L-乳酸接头(F420-0)。含有n+1谷氨酸单体的低聚谷氨酸尾部可以附着在分子(F420-n+1)4上。

长期以来,辅因子F420仅与古菌放线菌有关。这在很大程度上已被推翻。最近的分析显示,F420分布在变形杆菌门,Chloroflexi和潜在的厚壁动物的各种厌氧和好氧生物中,这些生物栖息在土壤,湖泊和人类肠道等无数栖息地15。2019年,Braga等人6表明,Paraburkholderia rhizoxinica蛋白杆菌产生独特的F420衍生物,含有3-磷酸甘油酯而不是2-磷酸乳酸盐尾巴,这可能在各种栖息地广泛分布。在古菌域内,F420已在几个谱系中被发现,包括产甲烷7,嗜甲烷细胞89和硫酸盐还原目10,并且应该在Thaumarchaeota11中产生。F420最广为人知的是氢营养和甲基营养性甲烷生成中必需的氧化还原辅酶。F420(F420H2)的还原形式作为电子供体用于还原亚甲基四氢甲基蝶呤(亚甲基-H4MPT,Mer)和甲基-H4MPT1213。它还可以用作含有细胞色素的产甲烷菌的H2非依赖性电子转运途径中的电子载体1214。此外,F420的氧化形式在420nm处激发时具有特征性的蓝绿色荧光,这有助于在显微镜下检测产甲烷菌(图1)。由于其低氧化还原潜力,F420有助于(i)广泛谱顽固或有毒有机化合物的外源性还原,(ii)链霉菌(放线菌门)中四环素和林科斯酰胺抗生素或植物毒素的合成,以及(iii)对分枝杆菌(放线菌门)中的氧化或亚硝化应激或其他不利条件的抵抗力151516171819202122。因此,F420依赖性氧化还原酶是有前途的生物催化剂,用于工业和制药目的以及污染环境的生物修复123。尽管最近有这些发现,但辅因子F420的确切作用在放线菌或其他细菌门中仍然知之甚少。

F420生物合成至少有三种途径2624。首先,生物合成途径被分成5-脱氮黄素生物合成和2-磷酸乳酸盐代谢分支。F420分子的反应部分通过FO合成酶合成,使用底物酪氨酸和5-氨基-6-核氨基-2,4(1H3H)-嘧啶二酮。结果是核黄素水平的发色团FO。在目前接受的乳酸代谢分支中,L-乳酸通过L-乳酸激酶(CofB)磷酸化为2-磷酸-L-乳酸;反过来,2-磷酸-L-乳酸通过2-磷酸-L-乳酸胍基转移酶(CofC)被鸟嘌呤基化为L-乳糖基-2-二磷酸-5'-鸟苷。在下一步中,L-乳糖基-2-二磷酸-5'-鸟苷通过2-磷酸-L-乳酸转移酶(CofD)与FO结合形成F420-02最后,酶F420-0:ɣ-谷氨酰连接酶(CofE)将谷氨酸单体与F420-0结合,形成不同数量的最终辅因子62325不同的生物体在附着的谷氨酸残基数量上显示出不同的模式,与分枝杆菌相比,产甲烷菌的尾巴更短22526。一般来说,产甲烷菌的尾巴长度从两到三个不等,在碎屑性产甲烷菌(Methanosarcina sp.)中最多有五个,而在分枝杆菌属中发现的尾巴长度从五到七个谷氨酸残基2252627不等。然而,最近的研究结果表明,长链F420F420依赖性氧化还原酶结合,亲和力高于短链F420;此外,结合的长链F420增加了底物亲和力,但降低了相应酶的周转率23

辅因子F420 的检测通常基于其荧光。因此,使用反相(RP)-HPLC2728分离其寡聚谷氨酸衍生物。最近,Ney等人使用四丁基氢氧化铵作为带负电荷的谷氨酸尾的离子配对试剂,成功地增强了RP-HLPC上的分离5。在这里,我们提出了一种制备样品的方法,随后裂解,提取,纯化,分离和定量辅因子F420 不仅来自纯培养物,还来自不同的环境样品(即土壤和消化池污泥)。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

注意:辅因子F420 的提取和分析是一个三步过程,包括样品裂解,通过固相萃取(SPE)进行辅因子预纯,以及通过离子配对RP-HPLC(IP-RP-HPLC)和荧光检测进行辅因子检测。在开始之前,按照 表1中所述准备材料和试剂。

1. 样品裂解

  1. 将多达 5 g 样品加入适当的试管(例如,50 mL 锥形管)。
  2. 向样品中加入5mL裂解缓冲液(2x储备溶液, 表1)。
  3. 用蒸馏水将最终体积降至10 mL,以达到0.5 g·mL-1的最终浓度。
  4. 涡旋稀释的样品20 s。
  5. 在121°C下高压灭菌30分钟。
  6. 对于森林土壤等干燥样品,高压灭菌后用蒸馏水将最终体积降至20 mL,并对稀释的样品进行涡旋。
    注意:高压灭菌过程中的温度升高可能会导致管爆裂。

2. 通过固相萃取 (SPE) 预纯化辅因子 F 420

注:SPE的所有步骤均在室温下进行

  1. 将样品冷却至室温。
  2. 将高压灭菌的样品在11,000× g下离心5分钟。
  3. 准备5 mL SPE柱,填充100mg弱阴离子混合模式聚合物吸附剂。
  4. 用3 mL甲醇调节阴离子交换器(条件溶液, 表1)。
  5. 用3mL蒸馏水平衡阴离子交换器(平衡溶液, 表1)。
  6. 将高达9.0 mL的上清液从离心裂解物中加载到SPE柱上。
  7. 用5 mL的25 mM乙酸铵洗去杂质(SPE洗涤液1, 表1)。
  8. 用5 mL甲醇洗去杂质(SPE洗涤液2, 表1)。
  9. 在1.0mL洗脱缓冲液中洗脱辅因子F420表1)。
    注意:准备新鲜的洗脱缓冲液。由于施加的真空和洗脱缓冲液的高蒸气压,洗脱量可能因样品而异。为了确保所有样品的最终体积相同,建议在洗脱前后称量收集容器并计算有效洗脱体积。通过添加洗脱缓冲液来平衡差异。

3. 辅因子F420的检测

  1. 将烘箱设置为40°C,荧光检测器设置为420nm消光波长和470nm发射波长。使用流动相A和B通过梯度模式实现分离(表1):0-3分钟:26%B;3-24分钟:26%-50%B;24-25分钟:50%B;25-27分钟:50%-26%B;27-35分钟:26%B,流速为0.75 mL·min-1
    注:在进样样品之前,通过至少用3个柱体积的74%流动相A和26%流动相B冲洗柱子来保证柱条件的平衡(表1)。
    1. 使用孔径为0.22μm的PTFE过滤器将SPE中洗脱的样品过滤到HPLC小瓶中。
      注:建议使用孔径为 0.22 μm 的 PTFE 过滤器。
    2. 将50μL洗脱的样品注入HPLC系统以分析辅因子F420 的组成和浓度。
      注意:由于本方案未使用定量标准,因此必须按峰面积比较样品和变体。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

嗜热膜肉和嗜热膜的纯培养物,两者都是嗜热的产甲烷古菌,在适当的培养基中生长,如前所述2930。对于嗜热甲膜肉,甲醇被用作能量来源,而嗜热甲膜肉瘤菌生长在H2 / CO2上。通过显微镜评估检查生长,而通过气相色谱法测量甲烷(CH4)来检查活性,如前所述31。根据所提出的方案,纯培养物用于辅因子F420的提取。此外,2020年秋季还采集了环境样本,包括来自嗜温性沼气反应器污泥(奥地利Zirl废水处理厂;有关污泥参数的详细信息,请参阅32),农业用草地(奥地利因斯布鲁克)和森林土壤(奥地利兰斯)的样品,用于提取和分析辅因子F420

纯培养物的生长已通过显微镜验证(图1),在孵育14天内通过气相色谱分析产生的CH4 (数据未显示)。通过应用不同的崩解策略测试了辅因子F420 提取纯培养物的效率:使用0.5-1.0 mm陶瓷拍打,超声处理以及使用121°C和1.2 bar压力的压力 - 温度崩解(高压灭菌)。如方案部分所述,使用压力 - 温度处理应用缓冲液,最大提取效率变得明显,因此进一步应用于所有后续实验(图2)。通过标准添加不同体积的生长良好的 嗜热膜胶芽培养物 进行提取效率测试。此外,不同样品和变异的比较基于色谱图的峰面积。

随后,对细胞提取物进行固相萃取(SPE)程序。为此,测试了不同的离子交换器。结果表明,弱阴离子混合模式聚合物吸附剂洗脱后产生的辅因子F420 量最高。此外,测试了不同的洗脱缓冲液和洗涤溶液,并显示出25mM乙酸铵作为洗涤缓冲液和NH3 在甲醇中作为洗脱缓冲液的最佳结果。洗脱步骤中的甲醇在洗脱后可通过真空温度处理与水进行交换。

辅因子F420 的HPLC分析使用不同的C18色谱柱进行测试,在使用NX C18色谱柱进行研究期间,其系统配置获得了最佳结果。包含具有不同谷氨酸尾长的F420 衍生物的已知分布的标准用于参考目的。该标准由澳大利亚国立大学的Colin Jackson教授慷慨提供。谷氨酸尾长分析揭示了辅因子F420 的总浓度和产甲烷纯培养物和环境样品F420 尾长分布的差异(图3)。

缓冲区 组成
裂解缓冲液(2x储备溶液) 200 mM 磷酸二氢钾 (KH2PO4
50 mM 乙二胺四乙酸
1% (w/v) 聚山梨醇酯 80 (吐温 80)
用5M氢氧化钠溶液调节至pH 7.0
SPE调理解决方案 甲醇(高效液相色谱级)
SPE 平衡解决方案 蒸馏水 0.2 μm 过滤
SPE洗涤液1 25 mM 乙酸铵
SPE洗涤液2 甲醇(高效液相色谱级)
SPE洗脱缓冲液 通过在甲醇中稀释20%-25%的氨水溶液,在甲醇中加入2%(v/ v)氨
HPLC流动相A 10 mM 四丁基氢氧化铵 (TBAH)
20 mM 磷酸氢二铵
用85%磷酸调节至pH 7.0
HPLC流动相B 乙腈(高效液相色谱级)

表1:用于固相萃取(SPE)和HPLC分析的缓冲液和流动相组成。 

Figure 1
图1:荧光产甲烷纯培养物。当辅因子F420被紫外光激发时,通过(A)相差显微镜和(B)荧光显微镜显示嗜甲烷肉冻症(在395-440nm处激发,在475-495nm处发射)。比例尺:10 μm。请单击此处查看此图的放大版本。

Figure 2
图 2:标准添加。 SPE从1.0 g基质中回收辅因子F420 的峰面积,并加标不同体积的 嗜热分枝杆菌 培养物。用0 μL,250μL,500μL,750μL和1000μL培养物修饰基质,并进行不同的崩解策略:拍打,超声处理和压力 - 温度崩解(高压灭菌)。 请点击此处查看此图的放大版本。

Figure 3
图3:谷氨酸尾长分布。 辅因子F420 纯培养物和环境样品的尾长分布。从上到下:农业用草甸(土壤),森林(土壤),嗜温沼气反应器, 嗜热芽孢杆菌 的纯培养物和 嗜热支原体 的纯培养物。通过在所示色谱图内最高峰上进行归一化来计算相对吸光度。 请点击此处查看此图的放大版本。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

为了评估来自产甲烷纯培养物的辅因子F420 ,可以进行显微镜评估以可视化受累微生物的生长和活性(荧光显微镜)(图1)。对于来自自然环境的样品,由于与其他荧光微生物,有机和无机颗粒的干扰,使用显微镜检测或定量F420 受到限制。在这种情况下,如前所述,使用HPLC提取F420 和随后的荧光分析5不仅可以提供有关辅因子F420 总体浓度的信息,还可以提供有关聚苦瓜酸盐尾部长度分布的信息。

对于辅因子F420的提取,压力 - 温度处理被证明是非常有效的(图2),并且符合先前的发现52733。通过该方法并应用包括EDTA和聚山梨醇酯的磷酸盐缓冲液裂解系统,从含有高浓度因子的产甲烷纯培养物中获得最高浓度的辅因子F420 。此外(与其他测试的细胞破碎方法相比),压力 -温度处理易于应用且节省材料。

进行SPE是为了进行下游HPLC分析,旨在测定样品中辅因子F420 聚谷氨酸尾长分布。在各种离子交换剂中,弱阴离子混合模式聚合物吸附剂表现出最佳性能,并允许辅因子F420 与基质有效结合以进行洗涤,以及在洗去不需要的副产物后将其随后从提取基质中去除。为此,碱性甲醇被证明是最好的。

通过所提出的方法,可以对辅因子F420 进行可重复分析的各种纯培养物和环境样品(图3)。即使是含有高比例不需要的副产物的土壤或污泥等样品,也可以通过所提出的程序进行分析。因此,通过HPLC的下游分析成功分析了F420 的总浓度和F420 衍生物聚谷氨酸尾部的长度分布。在土壤和其他样品中检测到高水平的F420 支持Ney et el.5,他们根据基因组学和宏基因组学分析提出辅因子在好氧土壤细菌中广泛存在。

总而言之,这是第一个旨在提取和分析辅因子F420 的协议,不仅从纯培养物中,而且从土壤或污泥等环境样品中提取和分析。从环境样品中提取F420 的最关键步骤是预清理裂解物以进行后续HPLC分析所需的SPE。所提出的协议将有助于未来的项目揭示F420 在各种环境和生物过程中的作用。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

我们非常感谢Colin Jackson教授对纯化辅因子F420的支持。这项研究得到了蒂罗尔科学基金(TWF)和因斯布鲁克大学(Publikationsfonds)的支持。我们非常感谢GPS,HK,SB,GG和HB的支持。

Materials

Name Company Catalog Number Comments
Autoclave
Biocompatible HPLC system equipped with gradient modul, oven and fluorescence detector Shimadzu HPLC system
Centrifuge and rotor for 50 mL “Falcon” tubes (11.000 rcf) and appropriate tubes
HPLC Column: Gemini NX C18, 5 μm, 150 x 3 mm Phenomenex HPLC column
PTFE filter (pore size 0.22 µm) to remove particulate matter prior HPLC analysis
Resin for SPE: Strata-X-AW 33 μm as weak anion mixed-mode polymeric sorbent Phenomenex weak anion mixed-mode polymeric sorbent
Vacuum manifold for SPE and appropriate collection tubes SPE equipment
Vortex mixer

DOWNLOAD MATERIALS LIST

References

  1. Greening, C., et al. Physiology, biochemistry, and applications of F420- and Fo-dependent redox reactions. Microbiology and Molecular Biology Reviews: MMBR. 80 (2), 451-493 (2016).
  2. Bashiri, G., et al. A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nature Communications. 10 (1), 451 (2019).
  3. Grinter, R., Greening, C. Cofactor F420: an expanded view of its distribution, biosynthesis, and roles in bacteria and archaea. FEMS Microbiology Reviews. , (2021).
  4. Eirich, L. D., Vogels, G. D., Wolfe, R. S. Proposed structure for coenzyme F 420 from methanobacterium. Biochemistry. 17 (22), 4583-4593 (1978).
  5. Ney, B., et al. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. The ISME Journal. 11 (1), 125-137 (2017).
  6. Braga, D., et al. Metabolic pathway rerouting in Paraburkholderia rhizoxinica evolved long-overlooked derivatives of coenzyme F420. ACS Chemical Biology. 14 (9), 2088-2094 (2019).
  7. Eirich, L. D., Vogels, G. D., Wolfe, R. S. Distribution of coenzyme F420 and properties of its hydrolytic fragments. Journal of Bacteriology. 140 (1), 20-27 (1979).
  8. Michaelis, W., et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science. 297 (5583), 1013-1015 (2002).
  9. Knittel, K., Lösekann, T., Boetius, A., Kort, R., Amann, R. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology. 71 (1), 467-479 (2005).
  10. Lin, X. -L., White, R. H. Occurrence of Coenzyme F420 and Its y-Monoglutamyl derivative in nonmethanogenic archaebacteria. Journal of Bacteriology. 168 (1), 444-448 (1986).
  11. Spang, A., et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environmental Microbiology. 14 (12), 3122-3145 (2012).
  12. Mand, T. D., Metcalf, W. W. Energy conservation and hydrogenase function in methanogenic archaea, in particular the genus Methanosarcina. Microbiology and Molecular Biology Reviews: MMBR. 83 (4), (2019).
  13. Lupa, B., Hendrickson, E. L., Leigh, J. A., Whitman, W. B. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Applied and Environmental Microbiology. 74 (21), 6584-6590 (2008).
  14. Kulkarni, G., Mand, T. D., Metcalf, W. W. Energy conservation via hydrogen cycling in the methanogenic archaeon Methanosarcina barkeri. mBio. 9 (4), (2018).
  15. Purwantini, E., Gillis, T. P., Daniels, L. Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiology Letters. 146 (1), 129-134 (1997).
  16. Purwantini, E., Daniels, L. Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. Journal of Bacteriology. 178 (10), 2861-2866 (1996).
  17. McCormick, J. R. D., Morton, G. O. Identity of cosynthetic factor I of Streptomyces aureofaciens and fragment FO from coenzyme F420 of Methanobacterium species. Journal of the American Chemical Society. 104 (14), 4014-4015 (1982).
  18. Coats, J. H., Li, G. P., Kuo, M. -S. T., Yurek, D. A. Discovery, production, and biological assay of an unusual flavenoid cofactor involved in lincomycin biosynthesis. The Journal of Antibiotics. 42 (3), 472-474 (1989).
  19. Bown, L., Altowairish, M. S., Fyans, J. K., Bignell, D. R. D. Production of the Streptomyces scabies coronafacoyl phytotoxins involves a novel biosynthetic pathway with an F420 -dependent oxidoreductase and a short-chain dehydrogenase/reductase. Molecular Microbiology. 101 (1), 122-135 (2016).
  20. Gurumurthy, M., et al. A novel F(420) -dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Molecular microbiology. 87 (4), 744-755 (2013).
  21. Greening, C., et al. Mycobacterial F420H2-dependent reductases promiscuously reduce diverse compounds through a common mechanism. Frontiers in Microbiology. 8, 1000 (2017).
  22. Mathew, S., Trajkovic, M., Kumar, H., Nguyen, Q. -T., Fraaije, M. W. Enantio- and regioselective ene-reductions using F420H2-dependent enzymes. Chemical Communications. 54 (79), Cambridge, England. 11208-11211 (2018).
  23. Ney, B., et al. Cofactor tail length modulates catalysis of bacterial F420-dependent oxidoreductases. Frontiers in Microbiology. 8, 1902 (2017).
  24. Grinter, R., et al. Cellular and structural basis of synthesis of the unique intermediate dehydro-F420-0 in mycobacteria. mSystems. 5 (3), (2020).
  25. Peck, M. W. Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina barkeri and Methanosarcina mazei. Applied and Environmental Microbiology. 55 (4), (1989).
  26. Gorris, L. G., vander Drift, C. Cofactor contents of methanogenic bacteria reviewed. BioFactors. 4 (3-4), Oxford, England. 139-145 (1994).
  27. Bair, T. B., Isabelle, D. W., Daniels, L. Structures of coenzyme F(420) in Mycobacterium species. Archives of Microbiology. 176 (1-2), 37-43 (2001).
  28. Portillo, M. C., Gonzalez, J. M. Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain). Microbial Ecology. 61, (2011).
  29. Wagner, A. O., et al. Medium preparation for the cultivation of microorganisms under strictly anaerobic/anoxic conditions. Journal of Visualized Experiments: JoVE. (150), e60155 (2019).
  30. Lackner, N., Hintersonnleitner, A., Wagner, A. O., Illmer, P. Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila. Archaea. 2018 (5), 1-7 (2018).
  31. Wagner, A. O., Reitschuler, C., Illmer, P. Effect of different acetate: Propionate ratios on the methanogenic community during thermophilic anaerobic digestion in batch experiments. Biochemical Engineering Journal. 90, 154-161 (2014).
  32. Wagner, A. O., et al. Sample preparation, preservation, and storage for volatile fatty acid quantification in biogas plants. Engineering in Life Sciences. 17 (2), 132-139 (2017).
  33. Bashiri, G., Rehan, A. M., Greenwood, D. R., Dickson, J. M. J., Baker, E. N. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PloS one. 5 (12), 15803 (2010).

Tags

环境科学, 第176期, F420, 辅酶F420, 氧化还原辅酶, 甲烷生成, 固相萃取, F420尾长, 聚谷氨酸尾
从产甲烷纯培养物和环境样品中提取辅因子<sub>F420</sub> 用于分析聚谷氨酸尾部长度
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Markt, R., Wunderer, M., Prem, E.More

Markt, R., Wunderer, M., Prem, E. M., Mutschlechner, M., Lackner, N., Wagner, A. O. Extraction of Cofactor F420 for Analysis of Polyglutamate Tail Length from Methanogenic Pure Cultures and Environmental Samples. J. Vis. Exp. (176), e62737, doi:10.3791/62737 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter