RESEARCH
Peer reviewed scientific video journal
Video encyclopedia of advanced research methods
Visualizing science through experiment videos
EDUCATION
Video textbooks for undergraduate courses
Visual demonstrations of key scientific experiments
BUSINESS
Video textbooks for business education
OTHERS
Interactive video based quizzes for formative assessments
Products
RESEARCH
JoVE Journal
Peer reviewed scientific video journal
JoVE Encyclopedia of Experiments
Video encyclopedia of advanced research methods
EDUCATION
JoVE Core
Video textbooks for undergraduates
JoVE Science Education
Visual demonstrations of key scientific experiments
JoVE Lab Manual
Videos of experiments for undergraduate lab courses
BUSINESS
JoVE Business
Video textbooks for business education
Solutions
Language
German
Menu
Menu
Menu
Menu
Research Article
Please note that some of the translations on this page are AI generated. Click here for the English version.
Erratum Notice
Important: There has been an erratum issued for this article. View Erratum Notice
Retraction Notice
The article Assisted Selection of Biomarkers by Linear Discriminant Analysis Effect Size (LEfSe) in Microbiome Data (10.3791/61715) has been retracted by the journal upon the authors' request due to a conflict regarding the data and methodology. View Retraction Notice
Das vorliegende Protokoll zeigt eine modifizierte Methode zum Nachweis und zur Quantifizierung von DNA-Protein-Crosslinks (DPCs) und deren posttranslationalen Modifikationen (PTMs), einschließlich Ubiquitylierung, SUMOylierung und ADP-Ribosylierung, die durch Topoisomerase-Inhibitoren und Formaldehyd induziert werden, wodurch die Bildung und Reparatur von DPCs und ihren PTMs untersucht werden kann.
DNA-Protein-Crosslinks (DPCs) sind häufige, allgegenwärtige und schädliche DNA-Läsionen, die durch endogene DNA-Schäden, Fehlfunktionen von Enzymen (Topoisomerasen, Methyltransferasen usw.) oder exogene Wirkstoffe wie Chemotherapeutika und Vernetzungsmittel entstehen. Sobald DPCs induziert sind, werden mehrere Arten von posttranslationalen Modifikationen (PTMs) als frühe Reaktionsmechanismen sofort mit ihnen konjugiert. Es wurde gezeigt, dass DPCs durch Ubiquitin, kleine Ubiquitin-ähnliche Modifikatoren (SUMO) und Poly-ADP-Ribose modifiziert werden können, die die Substrate darauf vorbereiten, ihre jeweiligen Reparaturenzyme zu signalisieren und in einigen Fällen die Reparatur auf sequentielle Weise zu koordinieren. Da PTMs schnell transpirieren und hochgradig reversibel sind, war es schwierig, PTM-konjugierte DPCs zu isolieren und nachzuweisen, die normalerweise auf niedrigen Niveaus verbleiben. Hier wird ein Immunoassay zur Reinigung und quantitativen Detektion von ubiquitylierten, SUMOylierten und ADP-ribosylierten DPCs (arzneimittelinduzierte Topoisomerase-DPCs und Aldehyd-induzierte unspezifische DPCs) in vivo vorgestellt. Dieser Assay leitet sich vom RADAR-Assay (Rapid Approach to DNA Adduct Recovery) ab, der für die Isolierung von genomischer DNA, die DPCs enthält, durch Ethanolfällung verwendet wird. Nach Normalisierung und Nukleaseverdauung werden PTMs von DPCs, einschließlich Ubiquitylierung, SUMOylierung und ADP-Ribosylierung, durch Immunoblot mit den entsprechenden Antikörpern nachgewiesen. Dieser robuste Assay kann verwendet werden, um neue molekulare Mechanismen zu identifizieren und zu charakterisieren, die enzymatische und nicht-enzymatische DPCs reparieren, und hat das Potenzial, niedermolekulare Inhibitoren zu entdecken, die auf spezifische Faktoren abzielen, die PTMs zur Reparatur von DPCs regulieren.
Genomische DNA-Schäden entstehen durch spontanen Zerfall, innere Schäden und Umweltfaktoren1. Die daraus resultierenden DNA-Läsionen umfassen beschädigte Basen, Fehlanpassungen, Einzel- und Doppelstrangbrüche, Inter- und Intrastrang-Querverbindungen sowie DNA-Protein-Querverbindungen (DPCs). Ein DPC wird gebildet, wenn ein Chromatin-gebundenes Protein durch kovalente Bindung auf der DNA gefangen wird. DPCs werden durch endogene DNA-Läsionen und reaktive Metaboliten sowie durch exogene Wirkstoffe wie Chemotherapeutika und bifunktionelle Vernetzungsmittel induziert. Unter Umständen kann auch eine Enzymdysfunktion zur Bildung von DPCsführen 2. Der große Unterschied in den DPC-Induktoren führt zu einem Unterschied in der Identität des kovalent gebundenen Proteins, der Chromosomenregion, in der das DPC gebildet wird, dem Strukturtyp der DNA, die mit dem Protein vernetzt ist, und der chemischen Eigenschaft der kovalenten Bindung zwischen dem Protein und der DNA 2,3,4.
Basierend auf ihrer chemischen Natur werden DPCs im Allgemeinen in zwei Gruppen eingeteilt: enzymatische DPCs und nicht-enzymatische DPCs. Bestimmte Enzyme wie Topoisomerasen, Glykosylasen und Methyl-/Acyltransferasen wirken, indem sie während ihrer normalen katalytischen Reaktionen reversible kovalente Enzym-DNA-Zwischenprodukte bilden. Diese sind kurzlebige Enzym-DNA-Zwischenprodukte und können in langlebige enzymatische DPCs umgewandelt werden, wenn sie durch endogene oder exogene Wirkstoffe, insbesondere durch Chemotherapeutika, eingefangen werden3. Topoisomerase-DPCs gehören zu den häufigsten enzymatischen DPCs in eukaryotischen Zellen, die durch klinisch nützliche Topoisomerase-Inhibitoren (Topotecan und Irinotecan für Topoisomerase I [TOP1] und Etoposid und Doxorubicin für Topoisomerase II [TOP2]) gebildet werden können und die primären therapeutischen Mechanismen dieser Inhibitoren sind 5,6. Die DNA-Methyltransferasen (DNMT) 1, 3A und 3B sind das Ziel von 5-Aza-2'-Desoxycytidin (auch bekannt als Decitabin) und bilden DPCs bei Exposition gegenüber dem Medikament7. Reaktive Wirkstoffe sowie ultraviolettes Licht und ionisierende Strahlung induzieren nicht-enzymatische DPCs, indem sie Proteine unspezifisch mit der DNA vernetzen. Reaktive Aldehyde wie Acetaldehyd und Formaldehyd (FA) entstehen häufig als Nebenprodukte des Zellstoffwechsels, unter denen FA in mikromolaren Konzentrationen während des Methanolstoffwechsels, der Lipidperoxidation und der Histondemethylierung produziert wird. Außerdem ist FA eine weltweit hergestellte Produktionschemikalie in großen Mengen, der viele Menschen sowohl umwelt- als auch beruflich ausgesetzt sind 8,9.
Sowohl enzymatische als auch nicht-enzymatische DPCs sind hochtoxisch für Zellen, da ihre sperrigen Proteinbestandteile fast alle chromatinbasierten Prozesse, einschließlich Replikation und Transkription, effizient behindern und zu Zellzyklusarrest und Apoptose führen, wenn sie nicht repariert werden. In den letzten zwei Jahrzehnten wurde die Reparatur von DPCs intensiv untersucht, und es wurden mehrere Proteine/Signalwege als Schlüsselfaktoren identifiziert, die DPCs entweder direkt reparieren oder ihre Reparaturprozesse modulieren. Zum Beispiel ist bekannt, dass die Proteolyse der Proteinmasse eines DPC ein zentraler Schritt der DPC-Reparatur ist und dass die Proteolyse durch die Proteasen SPRTN 10,11,12,13,14, FAM111A15, GCNA 16,17 oder den 26S-Proteasom-Komplex 18,19,20,21,22 katalysiert werden kann,23,24,25,26,27 zelltyp- oder zellkontextabhängig. Die Identifizierung und Charakterisierung dieser Proteasen stützte sich weitgehend auf den In-vivo-Komplex des Enzyms (ICE) Assay28,29 und den Rapid Approach to DNA Adduct Recovery (RADAR) Assay30,31, die beide DNA-Moleküle und ihre kovalent gebundenen Proteine aus freien zellulären Proteinen isolieren, um den Nachweis von DPCs durch Slot-Blot unter Verwendung von Antikörpern zu ermöglichen, die auf die vernetzten Proteine abzielen. Außerdem wurde der TARDIS-Assay (Trapped-in Agarose DNA Immunostaining) als Mittel zum Nachweis und zur Quantifizierung von DPCs auf Einzelzellebene verwendet32. Derzeit entscheiden sich die Forscher für die Messung von DPCs für den RADAR-Assay gegenüber dem ICE-Assay, da der ICE-Assay auf der Reinigung von Nukleinsäuren mittels Cäsiumchlorid-Gradienten-Ultrazentrifugation beruht, die extrem zeitaufwändig ist, während der RADAR-Assay Nukleinsäuren mit Ethanol innerhalb eines viel kürzeren Zeitraums ausfällt.
In den letzten Jahren mehren sich die Hinweise, dass multiple posttranslationale Modifikationen (PTMs) an der Signalübertragung und Rekrutierung von DPC-gerichteten Proteasen beteiligt sind 3,33,34,35. So wurde beispielsweise festgestellt, dass sowohl TOP1- als auch TOP2-DPCs unabhängig von der DNA-Replikation und Transkription durch den kleinen Ubiquitin-ähnlichen Modifikator (SUMO)-2/3 und dann SUMO-1 durch die SUMO E3-Ligase PIAS4 konjugiert werden. Die sequentiellen SUMO-Modifikationen scheinen ein Ziel von Ubiquitin zu sein, das an die SUMOylierten TOP-DPCs abgelagert wird und durch seinen Lysin-48-Rest durch eine SUMO-gerichtete Ubiquitin-Ligase, die als RNF4 bezeichnet wird, polymere Ketten bildet. Anschließend löst das Ubiquitin-Polymer ein Signal an das 26S-Proteasom aus und rekrutiert es an TOP-DPCs23,36. Derselbe SUMO-Ubiquitin-Signalweg wurde kürzlich gezeigt, dass er sowohl auf DNMT1-DPCs als auch auf PARP-DNA-Komplexe für deren Reparatur wirkt37,38. Darüber hinaus wurde berichtet, dass die SUMO-unabhängige Ubiquitylierung durch die Ubiquitin-E3-Ligase TRAIP DPCs für den proteasomalen Abbau in einer replikationsgekoppelten Weise vorbereitet39. Ähnlich wie der proteasomale Abbau von TOP-DPCs erfordert auch die Proteolyse von enzymatischen und nicht-enzymatischen DPCs durch die replikationsgekoppelte Metalloprotease SPRTN eine Ubiquitylierung der DPC-Substrate als Mechanismus zur Aktivierung von SPRTN40,41. Die Abgrenzung der Rolle von SUMOylierung und Ubiquitylierung erfordert den Nachweis von DPCs, die mit diesen PTMs markiert sind. Da der ursprüngliche ICE-Assay und der RADAR-Assay auf Slot-Blot-/Dot-Blot-Apparaturen zur Messung unverdauter DNA-Proben angewiesen sind, ist keiner dieser beiden Assays in der Lage, PTM-konjugierte DPC-Spezies mit unterschiedlichen Molekulargewichten aufzulösen und zu visualisieren. Um dieses Problem zu lösen, verdauten wir die DNA-Proben nach ihrer Reinigung durch Ethanolfällung und Probennormalisierung mit Mikrokokken-Nuklease, einer DNA- und RNA-Endo-Exonuklease, um die vernetzten Proteine freizusetzen, was es uns ermöglichte, die Proteine sowie ihre kovalenten PTMs mit Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) aufzulösen. Die Elektrophorese ermöglichte es uns, PTM-konjugierte DPCs mit spezifischen Antikörpern, die auf die PTMs abzielen, zu detektieren und zu quantifizieren. Wir nannten diese verbesserte Methode zunächst DUST-Assay, um ihre Robustheit bei der Detektion von ubiquitylierten und SUMOylierten TOP-DPCshervorzuheben 23. Später erweiterten wir die Verwendung des Assays, um die ADP-Ribosylierung von TOP1-DPCs in vivo quantitativ zu bewerten, indem wir Antikörper gegen Poly-ADP-Ribose-Polymere verwendeten20.
Hier wird ein detailliertes Protokoll für den Assay vorgestellt, der ubiquitylierte, SUMOylierte und ADP-ribosylierte DPCs detektiert und misst, das für die modifizierten TOP-DPCs, die durch ihre Inhibitoren induziert werden, und die unspezifischen/nicht-enzymatischen DPCs, die durch FA induziert werden, optimiert wurde. Dieser Assay isoliert PTM-konjugierte DPCs, indem Zellen mit einem chaotropen Wirkstoff lysiert, DNA mit Ethanol ausgefällt und die ansonsten vernetzten Proteine und ihre Modifikatoren mit Mikrokokken-Nuklease freigesetzt werden. Die ansonsten DNA-gebundenen Proteine und ihre PTMs werden durch Immunoblotting mit spezifischen Antikörpern quantifiziert. Dieser Assay ebnet einen neuen Weg zur Aufklärung der molekularen Mechanismen, mit denen die Zelle sowohl enzymatische als auch nicht-enzymatische DPCs repariert. Insbesondere ermöglicht er detaillierte Untersuchungen der Induktion und Kinetik von PTMs, die für die Regulation des Abbaus und der Reparatur von TOP-DPC wichtig sind, und ermöglicht somit die Entdeckung neuer Faktoren wie E3-Ligasen, die die PTMs bestimmen. sowie Inhibitoren, die auf diese Faktoren abzielen. Da einige der PTMs, die für die TOP-DPC-Reparatur verantwortlich sind, wahrscheinlich an der Reparatur von DPCs beteiligt sind, die durch andere Chemotherapeutika, wie z. B. platinbasierte Medikamente22, induziert werden, hat dieser Assay auch das Potenzial für die Entdeckung neuer Medikamente und die rationale Optimierung kombinatorischer Therapien mit Topoisomerase-Inhibitoren oder platinbasierten Antineoplastiken in Patientenzellen, um Behandlungsschemata zu steuern.
1. Zellkultur und medikamentöse Behandlung in der humanen embryonalen Nierenzelllinie 293 (HEK293)
2. Isolierung und Normalisierung von DNA, die vernetzte Proteine enthält
3. Western Blot von verdauten DNA-Proben
4. Slot-Blotting von unverdauten DNA-Proben
5. Densitometrische Analyse
Die repräsentativen Ergebnisse in Abbildung 1 zeigen die Bildung und Kinetik von arzneimittelinduzierten TOP1-DPCs und deren SUMOylierung und Ubiquitylierung. TOP1 spaltete einen Strang des DNA-Duplex und bildete ein kovalentes Enzym-DNA-Zwischenprodukt, das als TOP1-Spaltungskomplex (TOP1cc) bezeichnet wird. Die Behandlung mit Camptothecin (CPT), einem TOP1-Inhibitor, bindet und stabilisiert TOP1cc, was zur Bildung von langlebigen TOP1-DPCs führt. Es wurde beobachtet, dass TOP1-DPCs induziert wurden und 20 Minuten nach der CPT-Exposition ihren Höhepunkt erreichten. Gleichzeitig wurden die TOP1-DPCs durch SUMO-2/3 modifiziert, das ebenfalls 20 Minuten nach der CPT-Behandlung seinen Höhepunkt erreichte. Da SUMO-2 und SUMO-3 zu 95 % identisch sind, unterscheidet der Antikörper nicht voneinander. Nach 60 Minuten nahmen die TOP1-DPCs und ihre SUMO-2/3-Modifikation ab, begleitet von der Kulmination ihrer SUMO-1-Modifikation und Ubiquitylierung. Nach der 60-minütigen medikamentösen Behandlung begannen die Konzentrationen der TOP1-DPC SUMO-1-Modifikation und Ubiquitylierung zu sinken. In Säugetieren wirken TOP2-Isozyme α und β durch die Einführung eines DNA-Doppelstrangbruchs sowie durch die Bildung eines transienten und reversiblen kovalenten Enzym-DNA-Komplexes (TOP2cc). TOP2-Inhibitoren, wie z.B. Etoposid (ETOP), wandeln TOP2cc in TOP2-DPCs um und induzieren deren SUMOylierung und Ubiquitylierung. Ähnlich wie bei der Kinetik von TOP1-DPCs und ihren PTMs erreichten TOP2α- und β-DPCs und ihre SUMO-2/3-Modifikation nach 20 Minuten einen Höhepunkt und begannen dann zu sinken; In der Zwischenzeit erreichten ihre SUMO-1- und Ubiquitin-Modifikationen nach 60 Minuten ihren Höhepunkt (Abbildung 2). Es wurde gezeigt, dass die Clearance von TOP-DPCs aus dem proteasomalen Abbau resultiert, und die Clearance von TOP-DPC SUMOylierung und Ubiquitylierung ist wahrscheinlich auf das Recycling durch DeSUMOylierung bzw. Deubiquitylierung durch ihre umkehrenden Enzyme zurückzuführen. Die Experimente in Abbildung 3 untersuchten FA-induzierte nicht-enzymatische DPCs und ihre PTMs. Es wurde beobachtet, dass sich die DPCs und ihre SUMO-2/3, SUMO-1 und Ubiquitylierung dosisabhängig bildeten und akkumulierten. Abschließend wurde die PARylierung von TOP1-DPCs mit einem Anti-PAR-Antikörper mit der gleichen Methode quantitativ nachgewiesen (Abbildung 4). Die PARylierung von TOP1-DPC war nicht nachweisbar, es sei denn, der Zelle wurde ein PARP-Inhibitor zugesetzt, was darauf hindeutet, dass die PARylierung schnell transpiriert und hochdynamisch ist. In Übereinstimmung mit dem vorherigen Befund schien die Hemmung der dePARylierung durch PARGi TOP1-DPCs zu akkumulieren, wahrscheinlich durch die Blockierung des proteolytischen Abbaus.

Abbildung 1: Quantitative Analysen der Bildung und Kinetik von TOP1-DPCs und deren SUMOylierung und Ubiquitylierung nach CPT-Behandlung in HEK293-Zellen. (A) HEK293-Zellen wurden für bestimmte Zeiträume mit 20 μM CPT behandelt. Die Zelllysate wurden geerntet und dem modifizierten RADAR-Assay und dem Western Blot mit indizierten Antikörpern unterzogen. Unverdaute DNA-Proben wurden einem Slot-Blotting unterzogen, bei dem Anti-dsDNA-Antikörper als Beladungskontrolle verwendet wurden. (B) Die Bandintensitäten wurden mit der Software ImageJ quantifiziert und mit der Software Prism aufgetragen. Bitte klicken Sie hier, um eine größere Version dieser Abbildung anzuzeigen.

Abbildung 2: Quantitative Analysen der Bildung und Kinetik von TOP2-DPCs und deren SUMOylierung und Ubiquitylierung nach ETOP-Behandlung in HEK293-Zellen. (A) HEK293-Zellen wurden für bestimmte Zeiträume mit 200 μM ETOP behandelt. Die Zelllysate wurden geerntet und dem modifizierten RADAR-Assay und dem Western Blot mit indizierten Antikörpern unterzogen. Unverdaute DNA-Proben wurden einem Slot-Blotting unterzogen, bei dem Anti-dsDNA-Antikörper als Beladungskontrolle verwendet wurden. (B) Die Bandintensitäten wurden mit der Software ImageJ quantifiziert und mit der Software Prism aufgetragen. Bitte klicken Sie hier, um eine größere Version dieser Abbildung anzuzeigen.

Abbildung 3: Quantitative Analysen von nicht-enzymatischen DPCs und deren SUMOylierung und Ubiquitylierung nach FA-Behandlung in HEK293-Zellen. (A) HEK293-Zellen wurden 2 h lang mit FA der angegebenen Konzentrationen behandelt. Die Zelllysate wurden geerntet und dem modifizierten RADAR-Assay und dem Western Blot mit indizierten Antikörpern unterzogen. Unverdaute DNA-Proben wurden einem Slot-Blotting unterzogen, bei dem Anti-dsDNA-Antikörper als Beladungskontrolle verwendet wurden. (B) Die Bandintensitäten wurden mit der Software ImageJ quantifiziert und mit der Software Prism aufgetragen. Bitte klicken Sie hier, um eine größere Version dieser Abbildung anzuzeigen.

Abbildung 4: Quantitative Analysen von TOP1-DPCs und deren PARylierung nach CPT-Behandlung in HEK293-Zellen. (A) HEK293-Zellen wurden 1 h lang mit 10 μM PARGi vorbehandelt und dann für bestimmte Zeiträume mit CPT kobehandelt. Die Zelllysate wurden geerntet und dem modifizierten RADAR-Assay und dem Western Blot mit indizierten Antikörpern unterzogen. Unverdaute DNA-Proben wurden einem Slot-Blotting unterzogen, bei dem Anti-dsDNA-Antikörper als Beladungskontrolle verwendet wurden. (B) Die Bandintensitäten wurden mit der Software ImageJ quantifiziert und mit der Software Prism aufgetragen. Bitte klicken Sie hier, um eine größere Version dieser Abbildung anzuzeigen.
Der Autor erklärt, dass keine konkurrierenden Interessen bestehen.
Das vorliegende Protokoll zeigt eine modifizierte Methode zum Nachweis und zur Quantifizierung von DNA-Protein-Crosslinks (DPCs) und deren posttranslationalen Modifikationen (PTMs), einschließlich Ubiquitylierung, SUMOylierung und ADP-Ribosylierung, die durch Topoisomerase-Inhibitoren und Formaldehyd induziert werden, wodurch die Bildung und Reparatur von DPCs und ihren PTMs untersucht werden kann.
Diese Arbeit wurde teilweise durch den National Cancer Institute Center for Cancer ResearchExcellence in Postdoctoral Research Transition Award unterstützt.
| 10x Phosphatgepufferte Kochsalzlösung (PBS) | Thermo Fisher | 70011069 | |
| 4– 20% vorgefertigtes Polyacrylamid-Gel | Bio-Rad | 4561096 | |
| 4x Laemmli Probenpuffer | Bio-Rad | 1610747 | |
| AcquaStain (coomassie blue) | Bulldog Bio | AS001000 | |
| anti-dsDNA (mouse monoclonal) | Abcam | 27156 | 1:5.000 Verdünnung wird empfohlen |
| anti-PAR (mouse monoclonal) | R& D-Systeme | 4335-MC-100 | 1:500 Verdünnung wird empfohlen |
| Anti-SUMO-1 (Kaninchen monoklonal) | Cell Signaling Technology | 4940 | 1:250 Verdünnung wird empfohlen |
| Anti-SUMO-2/3 (Kaninchen monoklonal) | Cell Signaling Technology | 4971 | 1:250 Verdünnung wird empfohlen |
| Anti-TOP1 (Maus monoklonal) | BD Biosciences | 556597 | 1:500 Verdünnung wird empfohlen |
| Anti-TOP2α (Maus monoklonal) | Santa Cruz Biotechnology | SC-365799 | 1:250 Verdünnung wird |
| gegen TOP2&beta empfohlen; (Maus monoklonal) | Santa Cruz Biotechnology | SC-25330 | 1:250 Verdünnung wird empfohlen |
| Anti-Ubiquitin (monoklonal der Maus) | Santa Cruz Biotechnology | SC-8017 | 1:100 Verdünnung wird empfohlen |
| Calciumchlorid | Sigma-Aldrich | 499609 | Wird für den Mikrokokken-Nuklease-Verdau |
| verwendet Camptothecin | Sigma-Aldrich | PHL89593 | |
| ChemiDo MP Bildgebungssystem | Bio-Rad | 12003154 | |
| Dinatriumphosphat | Sigma-Aldrich | 5438380100 | Wird zur Herstellung von Natriumphosphatpuffer |
| DNAzol | Thermo Fisher | 10503027 | |
| DTT (Dithiothreitol) | Thermo Fisher | R0861 | |
| Dulbecco's modifiziertes Adlermedium | Sigma-Aldrich | 11965084 | |
| Ethylalkohol, 200 Proof | Sigma-Aldrich | E7023 | |
| Etoposid | Sigma-Aldrich | 1268808 | |
| Formaldehyd | Sigma-Aldrich | 47608 | |
| Graphpad Prism Software | GraphStats | Prism 9.0.0 | |
| HRP-linked Mouse IgG | Cytiva | NA931 | 1:5.000 Verdünnung wird empfohlen |
| HRP-linked Rabbit IgG | Cytiva | NA934 | 1: 5.000 Verdünnung wird empfohlen |
| ImageJ Software | NIH, USA | ImageJ 1,53e | |
| L-Glutamin | Fisher Scientific | 25030081 Maximale EmpfindlichkeitECL-Substrat | |
| Thermo Fisher | 34095 | ||
| Mikrokokken-Nuklease | New England BioLabs | M0247S | |
| Mononatriumphosphat | Sigma-Aldrich | S3139 | Wird zur Herstellung von Natriumphosphatpuffer |
| verwendet NanoDrop 2000 Spektralphotometer | Thermo Scientific | ND-2000 | |
| N-Ethylmaleimid | Thermo Fisher | 23030 | DeSUMOylierung/Deubiquitylierungsinhibitor |
| Nitrocellulosemembran, 0,45 &Mikro; m | Bio-Rad | 1620115 | |
| fettfreie Trockenmilch | Bio-Rad | 1706404XTU | |
| PDD00017273 | Selleckchem | S8862 | Poly(ADP-Ribose)-Glykohydrolase-Hemmer |
| Penicillin-Streptomycin | Thermo Fisher | 15140122 | |
| Proteasehemmer Cocktail | Thermo Fisher | 78430 | |
| Q700 Ultraschallgerät | Qsonica | Q700-110 | |
| Montagefertiges PVDF-Transferset | Bio-Rad | 1704274 | |
| Slot-Blot-Gerät | Bio-Rad | 1706542 | |
| Slot-Blot-Filterpapier | Bio-Rad | 1620161 | |
| Trans-Blot Turbo-Transfersystem | Bio-Rad | 1704150 | |
| Tris/Glycin/SDS-Elektrophoresepuffer | Bio-Rad | 1610732 | |
| Tween-20 | Sigma-Aldrich | P3179 | |
| Vertikale Elektrophoresezelle | Bio-Rad | 1658004 |