16.18: Análisis de Epistasia

Epistasis Analysis
JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
Epistasis Analysis

4,954 Views

01:09 min
April 30, 2023

Overview

Although Mendel chose seven unrelated traits in peas to study gene segregation, most traits involve multiple gene interactions that create a spectrum of phenotypes. When the interaction of various genes or alleles at different locations influences a phenotype, this is called epistasis. Epistasis often involves one gene masking or interfering with the expression of another (antagonistic epistasis). Epistasis often occurs when different genes are part of the same biochemical pathway. The expression of a gene might depend on a gene product in the same biochemical pathway.

Epistatic analysis

The study of epistatic interactions allows researchers to determine the functional relationship between genes, the ordering of genes in a pathway, and how different alleles quantitatively impact phenotypes. Consider a biochemical reaction catalyzed by multiple proteins coded by different genes. The genes involved in such biochemical reactions can mask or inhibit other genes involved in the same biochemical pathway, a phenomenon called epistasis. Such genes are said to be in one epistasis group. By analyzing the epistatic relationship between different genes, scientists can construct an order-of-function map that shows the sequence of events and genes involved in a pathway. This process is called epistatic analysis. The alleles selected for the epistatic analysis must have distinct phenotypes.

As such, since the concept of epistasis was introduced, it has become increasingly clear that most biological systems involve many genetic elements that interact with one another in multiple and complex ways.

Transcript

Una relación contraria entre dos genes es la epistasis, donde un gen enmascara o altera la expresión de otro. Se dice que el gen que influye es epistático al gen que se está enmascarando.

Por ejemplo, un gen que codifica la proteína 1 relacionada con la tirosinasa, o TYRP1, determina el color del pelaje de los perros: negro o marrón.

Otro gen, Tyr, codifica la enzima tirosinasa, que es responsable de la pigmentación en los animales. Una mutación en este gen puede causar la ausencia de pigmento, lo que da como resultado un perro albino que carece de coloración.

El orden en el que se expresan estos dos genes se puede determinar mediante una prueba de epistasis.

Si una mutación en el gen Tyr produce un perro albino que todavía tiene el gen TYRP1 de tipo salvaje, se puede concluir que el gen Tyr enmascara el efecto del gen TYRP1. Esto significaría que Tyr es epistático a TYRP1.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for