19.11: ATP synthase : structure

ATP Synthase: Structure
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
ATP Synthase: Structure

12,482 Views

01:18 min
April 30, 2023

Overview

ATP synthase or ATPase is among the most conserved proteins found in bacteria, mammals, and plants. This enzyme can catalyze a forward reaction in response to the electrochemical gradient, producing ATP from ADP and inorganic phosphate. ATP synthase can also work in a reverse direction by hydrolyzing ATP and generating an electrochemical gradient. Different forms of ATP synthases have evolved special features to meet the specific demands of the cell. Based on their specific feature, ATP synthases are classified as F (Phosphorylation factor), V (Vacuole), A (Archaea), P (Proton), or E (Extracellular). The mammalian ATP synthase is also known as the complex five of the respiratory chain complexes in the inner mitochondrial membrane.

It has been estimated that an average adult body produces 40 kg of ATP every day. Therefore, ATP synthesis is one of the most crucial and frequent processes that occur in the body.

Any mutation or defects in the ATP synthase enzyme can lead to fatal diseases. Mutation in one or more subunits of ATP synthase can inhibit their assembly into a functional enzyme. Consequently, this can lead to congenital defects such as cardiomyopathy, hepatomegaly, and lactic acidosis, causing the death of a newborn. Further, a mutation in the α subunit has been associated with several pathologies including, retinitis pigmentosa, neuropathy, familial bilateral striatal necrosis, and one type of Leigh syndrome, which is a neuromuscular disorder in young children. Also, the reduced expression of the β subunit and accumulation of α subunit in the cytosol can cause Alzheimer's disease.

Transcript

L’ATP synthase est un nanomoteur biologique lié à une membrane, principalement connu pour convertir l’ADP et le phosphate inorganique en ATP.

Cette enzyme est alimentée par un gradient électrochimique, établi par des protons répartis de manière inégale sur la membrane.

Les protons s’écoulent le long de leur gradient électrochimique et activent les deux domaines fonctionnels de l’ATP synthase : le sous-complexe F0 et le sous-complexe F1.

F0 est un composant transmembranaire avec des sous-unités qui interagissent directement avec les protons.

Tout d’abord, la sous-unité stator permet aux protons d’entrer par ses canaux et de se fixer au site de liaison sur une autre sous-unité appelée rotor.

La liaison des protons entrants provoque la rotation du rotor. Lorsque les protons effectuent une rotation complète de 360 degrés, ils se dissocient du rotor et sortent de la membrane par un autre canal de stator.

Ces mouvements dynamiques au sein de l’ATP synthase sont stabilisés par une tige périphérique qui établit une connexion rigide entre les sous-complexes F0 et F1.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for