3.22: Réactions couplées

Coupled Reactions
JoVE Core
Cell Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Cell Biology
Coupled Reactions

7,741 Views

01:17 min
May 22, 2025

Overview

Cellular processes such as building and breaking down complex molecules occur through stepwise chemical reactions. Some of these chemical reactions are spontaneous and release energy, whereas others require energy to proceed. Cells often couple the energy-releasing reaction with the energy-requiring one to carry out important cell functions. 

Energy in adenosine triphosphate or ATP molecules is easily accessible to do work. ATP powers the majority of energy-requiring cellular reactions. Cells couple the ATP hydrolysis' with endergonic reactions allowing them to proceed. One example of energy coupling using ATP involves a transmembrane ion pump that is extremely important for cellular function. This sodium-potassium pump (Na+/K+ pump) drives sodium out of the cell and potassium into the cell. A large percentage of a cell's ATP powers this pump, because cellular processes bring considerable sodium into the cell and potassium out of it. The pump constantly works to stabilize cellular concentrations of sodium and potassium.

Often during cellular metabolic reactions, such as nutrient synthesis and breakdown, certain molecules must alter slightly in their conformation to become substrates for the next step in the reaction series. One example is during the very first steps of cellular respiration, when a sugar glucose molecule breaks down in glycolysis. In the first step, ATP is required to phosphorylate glucose, creating a high-energy but unstable intermediate. This phosphorylation reaction powers a conformational change that allows the phosphorylated glucose molecule to convert to the phosphorylated sugar fructose. Fructose is a necessary intermediate for glycolysis to move forward. Here, ATP hydrolysis' exergonic reaction couples with the endergonic reaction of converting glucose into a phosphorylated intermediate in the pathway. Once again, the energy released by breaking a phosphate bond within ATP was used for phosphorylyzing another molecule, creating an unstable intermediate and powering an important conformational change.

This text is adapted from Openstax, Biology 2e, Section 6.1: Energy and Metabolism , section 6.3: The Laws of Thermodynamics, and 6.4 ATP: Adenosine Triphosphate.

Transcript

Le couplage d’énergie se produit lorsqu’une réaction hautement exergonique alimente une réaction endergonique. La réaction combinée est appelée réaction couplée.

Les cellules utilisent des réactions couplées pour effectuer différents processus, notamment la biosynthèse, le transport actif d’ions et le travail mécanique. L’hydrolyse de l’ATP est une réaction exergonique fréquemment couplée pour alimenter les processus biologiques.

Par exemple, la réaction endergonique entre le glutamate et l’ammoniac pour former de la glutamine est couplée à l’hydrolyse exergonique de l’ATP en ADP et en phosphate inorganique.

La variation nette d’énergie libre pour la réaction couplée est la somme des variations individuelles d’énergie libre. En raison de la grande différence négative ΔG pour l’hydrolyse de l’ATP, la variation totale d’énergie libre standard est de moins 16,3 kJ/mol, et la réaction peut continuer.

Les réactions de biosynthèse couplées partagent souvent un intermédiaire instable commun. Dans la biosynthèse de la glutamine, le transfert du phosphate de l’ATP au glutamate forme le glutamylphosphate intermédiaire, qui réagit ensuite avec l’ammoniac pour former de la glutamine.

Key Terms and definitions​

Learning Objectives

Questions that this video will help you answer

This video is also useful for